Voltage-Controlled ON–OFF-Switching of Magnetoresistance in FeOx/Fe/Au Aerogel Networks

IF 5.7 Q2 CHEMISTRY, PHYSICAL ACS Materials Au Pub Date : 2023-10-18 DOI:10.1021/acsmaterialsau.3c00045
Martin Nichterwitz, Karl Hiekel, Daniel Wolf, Alexander Eychmüller and Karin Leistner*, 
{"title":"Voltage-Controlled ON–OFF-Switching of Magnetoresistance in FeOx/Fe/Au Aerogel Networks","authors":"Martin Nichterwitz,&nbsp;Karl Hiekel,&nbsp;Daniel Wolf,&nbsp;Alexander Eychmüller and Karin Leistner*,&nbsp;","doi":"10.1021/acsmaterialsau.3c00045","DOIUrl":null,"url":null,"abstract":"<p >Voltage control of magnetoresistance (MR) in nanoscale three-dimensional (3D) geometries is interesting from a fundamental point of view and a promising route toward novel sensors and energy-efficient computing schemes. Magneto-ionic mechanisms are favorable for low-voltage control of magnetism and room-temperature operation, but magneto-ionic control of MR has been studied only for planar geometries so far. We synthesize a 3D nanomaterial with magneto-ionic functionality by electrodepositing an iron hydroxide/iron coating on a porous nanoscale gold network (aerogel). To enable maximum magneto-ionic ON–OFF-switching, the thickness of the coating is adjusted to a few nanometers by a self-terminating electrodeposition process. In situ magnetotransport measurements during electrolytic gating of these nanostructures reveal large reversible changes in MR, including ON–OFF-switching of MR, with a small applied voltage difference (1.72 V). This effect is related to the electrochemical switching between a ferromagnetic iron shell/gold core nanostructure (negative MR at the reduction voltage) and an iron oxide shell/gold core nanostructure (negligible MR at the oxidation voltage).</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"4 1","pages":"55–64"},"PeriodicalIF":5.7000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.3c00045","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialsau.3c00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Voltage control of magnetoresistance (MR) in nanoscale three-dimensional (3D) geometries is interesting from a fundamental point of view and a promising route toward novel sensors and energy-efficient computing schemes. Magneto-ionic mechanisms are favorable for low-voltage control of magnetism and room-temperature operation, but magneto-ionic control of MR has been studied only for planar geometries so far. We synthesize a 3D nanomaterial with magneto-ionic functionality by electrodepositing an iron hydroxide/iron coating on a porous nanoscale gold network (aerogel). To enable maximum magneto-ionic ON–OFF-switching, the thickness of the coating is adjusted to a few nanometers by a self-terminating electrodeposition process. In situ magnetotransport measurements during electrolytic gating of these nanostructures reveal large reversible changes in MR, including ON–OFF-switching of MR, with a small applied voltage difference (1.72 V). This effect is related to the electrochemical switching between a ferromagnetic iron shell/gold core nanostructure (negative MR at the reduction voltage) and an iron oxide shell/gold core nanostructure (negligible MR at the oxidation voltage).

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化铁/铁/金气凝胶网络中磁阻的电压控制开-关切换
从基础角度来看,对纳米级三维(3D)几何结构中的磁阻(MR)进行电压控制非常有趣,也是实现新型传感器和高能效计算方案的一条大有可为的途径。磁离子机制有利于低电压控制磁性和室温操作,但磁离子控制磁阻迄今只针对平面几何结构进行过研究。我们通过在多孔纳米级金网络(气凝胶)上电沉积氢氧化铁/铁涂层,合成了一种具有磁离子功能的三维纳米材料。为了最大限度地实现磁离子导通-关断切换,涂层的厚度通过自终止电沉积工艺调整到几纳米。在这些纳米结构的电解选通过程中进行的原位磁传输测量显示,在施加电压差很小(1.72 V)的情况下,磁导率发生了很大的可逆变化,包括磁导率的ON-OFF开关。这种效应与铁磁性铁壳/金核纳米结构(还原电压下磁导率为负)和氧化铁壳/金核纳米结构(氧化电压下磁导率可忽略不计)之间的电化学切换有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Materials Au
ACS Materials Au 材料科学-
CiteScore
5.00
自引率
0.00%
发文量
0
期刊介绍: ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications
期刊最新文献
Issue Editorial Masthead Issue Publication Information Nanostructured Thin Films Enhancing the Performance of New Organic Electronic Devices: Does It Make Sense? Nanostructured Thin Films Enhancing the Performance of New Organic Electronic Devices: Does It Make Sense? Understanding Defect-Mediated Ion Migration in Semiconductors using Atomistic Simulations and Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1