{"title":"Beyond the Csiszár–Körner Bound: Best-Possible Wiretap Coding via Obfuscation","authors":"Yuval Ishai, Alexis Korb, Paul Lou, Amit Sahai","doi":"10.1007/s00145-023-09482-2","DOIUrl":null,"url":null,"abstract":"Abstract A wiretap coding scheme (Wyner in Bell Syst Tech J 54(8):1355–1387, 1975) enables Alice to reliably communicate a message m to an honest Bob by sending an encoding c over a noisy channel $$\\textsf{ChB}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ChB</mml:mi> </mml:math> , while at the same time hiding m from Eve who receives c over another noisy channel $$\\textsf{ChE}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ChE</mml:mi> </mml:math> . Wiretap coding is clearly impossible when $$\\textsf{ChB}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ChB</mml:mi> </mml:math> is a degraded version of $$\\textsf{ChE}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ChE</mml:mi> </mml:math> , in the sense that the output of $$\\textsf{ChB}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ChB</mml:mi> </mml:math> can be simulated using only the output of $$\\textsf{ChE}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ChE</mml:mi> </mml:math> . A classic work of Csiszár and Korner (IEEE Trans Inf Theory 24(3):339–348, 1978) shows that the converse does not hold. This follows from their full characterization of the channel pairs $$(\\textsf{ChB},\\textsf{ChE})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>ChB</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ChE</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> that enable information-theoretic wiretap coding. In this work, we show that in fact the converse does hold when considering computational security ; that is, wiretap coding against a computationally bounded Eve is possible if and only if $$\\textsf{ChB}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ChB</mml:mi> </mml:math> is not a degraded version of $$\\textsf{ChE}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ChE</mml:mi> </mml:math> . Our construction assumes the existence of virtual black-box obfuscation of specific classes of “evasive” functions that generalize fuzzy point functions and can be heuristically instantiated using indistinguishability obfuscation. Finally, our solution has the appealing feature of being universal in the sense that Alice’s algorithm depends only on $$\\textsf{ChB}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ChB</mml:mi> </mml:math> and not on $$\\textsf{ChE}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ChE</mml:mi> </mml:math> .","PeriodicalId":54849,"journal":{"name":"Journal of Cryptology","volume":"21 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00145-023-09482-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract A wiretap coding scheme (Wyner in Bell Syst Tech J 54(8):1355–1387, 1975) enables Alice to reliably communicate a message m to an honest Bob by sending an encoding c over a noisy channel $$\textsf{ChB}$$ ChB , while at the same time hiding m from Eve who receives c over another noisy channel $$\textsf{ChE}$$ ChE . Wiretap coding is clearly impossible when $$\textsf{ChB}$$ ChB is a degraded version of $$\textsf{ChE}$$ ChE , in the sense that the output of $$\textsf{ChB}$$ ChB can be simulated using only the output of $$\textsf{ChE}$$ ChE . A classic work of Csiszár and Korner (IEEE Trans Inf Theory 24(3):339–348, 1978) shows that the converse does not hold. This follows from their full characterization of the channel pairs $$(\textsf{ChB},\textsf{ChE})$$ (ChB,ChE) that enable information-theoretic wiretap coding. In this work, we show that in fact the converse does hold when considering computational security ; that is, wiretap coding against a computationally bounded Eve is possible if and only if $$\textsf{ChB}$$ ChB is not a degraded version of $$\textsf{ChE}$$ ChE . Our construction assumes the existence of virtual black-box obfuscation of specific classes of “evasive” functions that generalize fuzzy point functions and can be heuristically instantiated using indistinguishability obfuscation. Finally, our solution has the appealing feature of being universal in the sense that Alice’s algorithm depends only on $$\textsf{ChB}$$ ChB and not on $$\textsf{ChE}$$ ChE .
期刊介绍:
The Journal of Cryptology is a forum for original results in all areas of modern information security. Both cryptography and cryptanalysis are covered, including information theoretic and complexity theoretic perspectives as well as implementation, application, and standards issues. Coverage includes such topics as public key and conventional algorithms and their implementations, cryptanalytic attacks, pseudo-random sequences, computational number theory, cryptographic protocols, untraceability, privacy, authentication, key management and quantum cryptography. In addition to full-length technical, survey, and historical articles, the journal publishes short notes.