Tingyu Zhu, Laura J Gamble, Matthew Klapman, Lan Xue, Virginia M Lesser
{"title":"Using Auxiliary Information in Probability Survey Data to Improve Pseudo-Weighting in Nonprobability Samples: A Copula Model Approach","authors":"Tingyu Zhu, Laura J Gamble, Matthew Klapman, Lan Xue, Virginia M Lesser","doi":"10.1093/jssam/smad032","DOIUrl":null,"url":null,"abstract":"Abstract While probability sampling has been considered the gold standard of survey methods, nonprobability sampling is increasingly popular due to its convenience and low cost. However, nonprobability samples can lead to biased estimates due to the unknown nature of the underlying selection mechanism. In this article, we propose parametric and semiparametric approaches to integrate probability and nonprobability samples using common ancillary variables observed in both samples. In the parametric approach, the joint distribution of ancillary variables is assumed to follow the latent Gaussian copula model, which is flexible to accommodate both categorical and continuous variables. In contrast, the semiparametric approach requires no assumptions about the distribution of ancillary variables. In addition, logistic regression is used to model the mechanism by which population units enter the nonprobability sample. The unknown parameters in the copula model are estimated through the pseudo maximum likelihood approach. The logistic regression model is estimated by maximizing the sample likelihood constructed from the nonprobability sample. The proposed method is evaluated in the context of estimating the population mean. Our simulation results show that the proposed method is able to correct the selection bias in the nonprobability sample by consistently estimating the underlying inclusion mechanism. By incorporating additional information in the nonprobability sample, the combined method can estimate the population mean more efficiently than using the probability sample alone. A real-data application is provided to illustrate the practical use of the proposed method.","PeriodicalId":17146,"journal":{"name":"Journal of Survey Statistics and Methodology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Survey Statistics and Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jssam/smad032","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract While probability sampling has been considered the gold standard of survey methods, nonprobability sampling is increasingly popular due to its convenience and low cost. However, nonprobability samples can lead to biased estimates due to the unknown nature of the underlying selection mechanism. In this article, we propose parametric and semiparametric approaches to integrate probability and nonprobability samples using common ancillary variables observed in both samples. In the parametric approach, the joint distribution of ancillary variables is assumed to follow the latent Gaussian copula model, which is flexible to accommodate both categorical and continuous variables. In contrast, the semiparametric approach requires no assumptions about the distribution of ancillary variables. In addition, logistic regression is used to model the mechanism by which population units enter the nonprobability sample. The unknown parameters in the copula model are estimated through the pseudo maximum likelihood approach. The logistic regression model is estimated by maximizing the sample likelihood constructed from the nonprobability sample. The proposed method is evaluated in the context of estimating the population mean. Our simulation results show that the proposed method is able to correct the selection bias in the nonprobability sample by consistently estimating the underlying inclusion mechanism. By incorporating additional information in the nonprobability sample, the combined method can estimate the population mean more efficiently than using the probability sample alone. A real-data application is provided to illustrate the practical use of the proposed method.
期刊介绍:
The Journal of Survey Statistics and Methodology, sponsored by AAPOR and the American Statistical Association, began publishing in 2013. Its objective is to publish cutting edge scholarly articles on statistical and methodological issues for sample surveys, censuses, administrative record systems, and other related data. It aims to be the flagship journal for research on survey statistics and methodology. Topics of interest include survey sample design, statistical inference, nonresponse, measurement error, the effects of modes of data collection, paradata and responsive survey design, combining data from multiple sources, record linkage, disclosure limitation, and other issues in survey statistics and methodology. The journal publishes both theoretical and applied papers, provided the theory is motivated by an important applied problem and the applied papers report on research that contributes generalizable knowledge to the field. Review papers are also welcomed. Papers on a broad range of surveys are encouraged, including (but not limited to) surveys concerning business, economics, marketing research, social science, environment, epidemiology, biostatistics and official statistics. The journal has three sections. The Survey Statistics section presents papers on innovative sampling procedures, imputation, weighting, measures of uncertainty, small area inference, new methods of analysis, and other statistical issues related to surveys. The Survey Methodology section presents papers that focus on methodological research, including methodological experiments, methods of data collection and use of paradata. The Applications section contains papers involving innovative applications of methods and providing practical contributions and guidance, and/or significant new findings.