Thermal transport and structural improvements due to annealing of wafer bonded β-Ga2O3|4H-SiC

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Journal of Vacuum Science & Technology A Pub Date : 2023-09-12 DOI:10.1116/6.0002693
Michael E. Liao, Kenny Huynh, Zhe Cheng, Jingjing Shi, Samuel Graham, Mark S. Goorsky
{"title":"Thermal transport and structural improvements due to annealing of wafer bonded β-Ga2O3|4H-SiC","authors":"Michael E. Liao, Kenny Huynh, Zhe Cheng, Jingjing Shi, Samuel Graham, Mark S. Goorsky","doi":"10.1116/6.0002693","DOIUrl":null,"url":null,"abstract":"The impact of postbond annealing on the structural and thermal characteristics of 130 nm thick exfoliated (201) β-Ga2O3 (via H+ ion implantation) wafer bonded to (0001) 4H-SiC was studied. Thirty nanometer amorphous-Al2O3 was grown on the β-Ga2O3 substrates prior to bonding as an interlayer between β-Ga2O3 and 4H-SiC. The surface activated bonding technique was utilized for bonding, which induces a thin nanometer amorphous interfacial region at the bonded interface (Al2O3|4H-SiC). We demonstrate annealing the bonded structure at 800 °C up to 1 h is beneficial: (1) the removal of residual strain in the exfoliated β-Ga2O3 layer that was due to the exfoliation implant, (2) reduction of lattice mosaicity in the β-Ga2O3 layer, (3) nearly complete recrystallization of the amorphous bonded interfacial region, and (4) partial recrystallization of the initially amorphous-Al2O3 interlayer. The thermal characteristics correspondingly improve with the improvement in structural characteristics. The thermal conductivity of the as-bonded β-Ga2O3 layer was 2.9 W/m K, and the thermal boundary conductance of the bonded interface was 66 MW/m2 K. After annealing at 800 °C for 1 h, triple-axis x-ray diffraction ω:2θ measurements showed a reduction in strain for the β-Ga2O3 layer and the symmetric (201) rocking curve widths. We simultaneously observe a doubling of the β-Ga2O3 thermal conductivity to 6.0 W/m K and a 20% increase in the thermal boundary conductance. However, upon further annealing up to 10 h and fully recrystallizing both the Al2O3 interlayer and bonded interface, the thermal boundary conductance dropped by ∼30%. This preliminary result suggests that crystalline heterointerfaces may not necessarily be the most optimal interfacial structure for thermal transport.","PeriodicalId":17490,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"47 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0002693","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of postbond annealing on the structural and thermal characteristics of 130 nm thick exfoliated (201) β-Ga2O3 (via H+ ion implantation) wafer bonded to (0001) 4H-SiC was studied. Thirty nanometer amorphous-Al2O3 was grown on the β-Ga2O3 substrates prior to bonding as an interlayer between β-Ga2O3 and 4H-SiC. The surface activated bonding technique was utilized for bonding, which induces a thin nanometer amorphous interfacial region at the bonded interface (Al2O3|4H-SiC). We demonstrate annealing the bonded structure at 800 °C up to 1 h is beneficial: (1) the removal of residual strain in the exfoliated β-Ga2O3 layer that was due to the exfoliation implant, (2) reduction of lattice mosaicity in the β-Ga2O3 layer, (3) nearly complete recrystallization of the amorphous bonded interfacial region, and (4) partial recrystallization of the initially amorphous-Al2O3 interlayer. The thermal characteristics correspondingly improve with the improvement in structural characteristics. The thermal conductivity of the as-bonded β-Ga2O3 layer was 2.9 W/m K, and the thermal boundary conductance of the bonded interface was 66 MW/m2 K. After annealing at 800 °C for 1 h, triple-axis x-ray diffraction ω:2θ measurements showed a reduction in strain for the β-Ga2O3 layer and the symmetric (201) rocking curve widths. We simultaneously observe a doubling of the β-Ga2O3 thermal conductivity to 6.0 W/m K and a 20% increase in the thermal boundary conductance. However, upon further annealing up to 10 h and fully recrystallizing both the Al2O3 interlayer and bonded interface, the thermal boundary conductance dropped by ∼30%. This preliminary result suggests that crystalline heterointerfaces may not necessarily be the most optimal interfacial structure for thermal transport.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
晶圆键合β-Ga2O3|4H-SiC退火后的热输运和结构改善
研究了键后退火对(0001)4H-SiC键合的130 nm厚脱落(201)β-Ga2O3晶圆的结构和热特性的影响。在β-Ga2O3衬底上生长了30纳米的非晶al2o3,作为β-Ga2O3和4H-SiC之间的中间层。利用表面活化键合技术进行键合,在键合界面(Al2O3|4H-SiC)处形成了一个薄的纳米非晶界面区。我们证明了在800℃下退火1 h是有益的:(1)去除脱落β-Ga2O3层中由于脱落植入引起的残余应变,(2)β-Ga2O3层中晶格嵌合性的降低,(3)非晶态键合界面区域几乎完全再结晶,(4)初始非晶态al2o3中间层部分再结晶。随着结构特性的改善,热特性也相应改善。结合β-Ga2O3层的导热系数为2.9 W/m K,结合界面的热边界导热系数为66 MW/m2 K。800℃退火1 h后,三轴x射线衍射ω:2θ测量结果表明,β-Ga2O3层应变减小,对称(201)摇摆曲线宽度减小。同时,我们观察到β-Ga2O3的导热系数增加了一倍,达到6.0 W/m K,热边界导率增加了20%。然而,进一步退火10 h后,Al2O3中间层和键合界面完全再结晶,热边界电导下降了~ 30%。这一初步结果表明,晶体异质界面不一定是热输运的最佳界面结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Vacuum Science & Technology A
Journal of Vacuum Science & Technology A 工程技术-材料科学:膜
CiteScore
5.10
自引率
10.30%
发文量
247
审稿时长
2.1 months
期刊介绍: Journal of Vacuum Science & Technology A publishes reports of original research, letters, and review articles that focus on fundamental scientific understanding of interfaces, surfaces, plasmas and thin films and on using this understanding to advance the state-of-the-art in various technological applications.
期刊最新文献
ToF-SIMS analysis of ultrathin films and their fragmentation patterns. Spinel LiGa5O8 prospects as ultra-wideband-gap semiconductor: Band structure, optical properties, and doping Dislocation avalanches in nanostructured molybdenum nanopillars Plasma nitridation for atomic layer etching of Ni Hardness, adhesion, and wear behavior of magnetron cosputtered Ti:Zr-O-N thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1