Provenance of the early Palaeozoic volcano-sedimentary successions from eastern part of the Central Sudetes: implications for the tectonic evolution of the NE Bohemian Massif
Jacek Szczepański, Gabriela Kaszuba, Robert Anczkiewicz, Sławomir Ilnicki
{"title":"Provenance of the early Palaeozoic volcano-sedimentary successions from eastern part of the Central Sudetes: implications for the tectonic evolution of the NE Bohemian Massif","authors":"Jacek Szczepański, Gabriela Kaszuba, Robert Anczkiewicz, Sławomir Ilnicki","doi":"10.1017/s0016756823000523","DOIUrl":null,"url":null,"abstract":"Abstract The Kamieniec Metamorphic Belt (KMB) and the Doboszowice Metamorphic Complex (DMC) expose a fragment of the pre-Variscan volcano-sedimentary cover preserved in the Fore-Sudetic Block in the NE part of the Bohemian Massif. We present the age of detrital and magmatic zircon grains and the bulk rock chemical composition of rock samples from the KMB and the DMC to better understand the evolution of the early Palaeozoic Gondwana margin. The zircon age spectra were acquired by U–Pb LA–ICP–MS dating and represent two groups that differ by maximum depositional age (MDA). The paragneiss from the DMC displays the MDA at 456 Ma, whereas the mica shist from the KMB displays the MDA at 529 Ma. Older age peaks in both groups of samples are represented by the Neoproterozoic and less frequent the Paleoproterozoic and Archean. The data presented indicate that the rock successions were sourced from the Cadomian orogen and deposited in the basins that developed on the Gondwana margin. Our results support the suggestion that the crystalline basement in the eastern part of the Fore-Sudetic Block has an affinity to the Trans-Saharan Belt or West African Craton and was part of a Gondwana shelf. The final stage of evolution of the studied successions was related to the Variscan thermal overprint. Based on presented data, we support the idea that the suture separating the Brunovistulian domain from the rest of the Gondwana-derived terranes is not related to the closure of the Rheic Ocean and represents a local feature.","PeriodicalId":12612,"journal":{"name":"Geological Magazine","volume":"2 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0016756823000523","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The Kamieniec Metamorphic Belt (KMB) and the Doboszowice Metamorphic Complex (DMC) expose a fragment of the pre-Variscan volcano-sedimentary cover preserved in the Fore-Sudetic Block in the NE part of the Bohemian Massif. We present the age of detrital and magmatic zircon grains and the bulk rock chemical composition of rock samples from the KMB and the DMC to better understand the evolution of the early Palaeozoic Gondwana margin. The zircon age spectra were acquired by U–Pb LA–ICP–MS dating and represent two groups that differ by maximum depositional age (MDA). The paragneiss from the DMC displays the MDA at 456 Ma, whereas the mica shist from the KMB displays the MDA at 529 Ma. Older age peaks in both groups of samples are represented by the Neoproterozoic and less frequent the Paleoproterozoic and Archean. The data presented indicate that the rock successions were sourced from the Cadomian orogen and deposited in the basins that developed on the Gondwana margin. Our results support the suggestion that the crystalline basement in the eastern part of the Fore-Sudetic Block has an affinity to the Trans-Saharan Belt or West African Craton and was part of a Gondwana shelf. The final stage of evolution of the studied successions was related to the Variscan thermal overprint. Based on presented data, we support the idea that the suture separating the Brunovistulian domain from the rest of the Gondwana-derived terranes is not related to the closure of the Rheic Ocean and represents a local feature.
期刊介绍:
Geological Magazine, established in 1864, is one of the oldest and best-known periodicals in earth sciences. It publishes original scientific papers covering the complete spectrum of geological topics, with high quality illustrations. Its worldwide circulation and high production values, combined with Rapid Communications and Book Review sections keep the journal at the forefront of the field.
This journal is included in the Cambridge Journals open access initiative, Cambridge Open Option.