Review on Creep Phenomenon and Its Model in Aircraft Engines

IF 1.1 4区 工程技术 Q3 ENGINEERING, AEROSPACE International Journal of Aerospace Engineering Pub Date : 2023-05-29 DOI:10.1155/2023/4465565
Lin Yuan, Wang Chenglong, Sun Yongchao, Sun Mingbo, Yuan Yu, Gao Zhan, Xiao Yiwen
{"title":"Review on Creep Phenomenon and Its Model in Aircraft Engines","authors":"Lin Yuan, Wang Chenglong, Sun Yongchao, Sun Mingbo, Yuan Yu, Gao Zhan, Xiao Yiwen","doi":"10.1155/2023/4465565","DOIUrl":null,"url":null,"abstract":"The aircraft is subjected to high-temperature and high-pressure conditions during flight, which renders it susceptible to the occurrence of creep phenomenon. Several academics have conducted extensive research on this issue. This research paper provides a comprehensive overview of the existing literature on creep phenomena in aircraft engines. First, several classical creep calculation models are enumerated and categorized as creep life calculation, creep-fatigue life calculation, and creep deformation calculation. Studies on creep phenomena are conducted in various components of aircraft engines, such as the engine’s turbine blades, turbine disks, and combustion chambers. The creep behavior of turbine blades in aircraft engines has been extensively researched. Furthermore, the protective measures aimed at mitigating creep are presented. Materials with high creep resistance can be used, and alternative fuels could be implemented. This paper provides an in-depth analysis of the advantages of creep in aircraft, presented in a favorable perspective. Finally, the prospective future research direction is discussed.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4465565","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The aircraft is subjected to high-temperature and high-pressure conditions during flight, which renders it susceptible to the occurrence of creep phenomenon. Several academics have conducted extensive research on this issue. This research paper provides a comprehensive overview of the existing literature on creep phenomena in aircraft engines. First, several classical creep calculation models are enumerated and categorized as creep life calculation, creep-fatigue life calculation, and creep deformation calculation. Studies on creep phenomena are conducted in various components of aircraft engines, such as the engine’s turbine blades, turbine disks, and combustion chambers. The creep behavior of turbine blades in aircraft engines has been extensively researched. Furthermore, the protective measures aimed at mitigating creep are presented. Materials with high creep resistance can be used, and alternative fuels could be implemented. This paper provides an in-depth analysis of the advantages of creep in aircraft, presented in a favorable perspective. Finally, the prospective future research direction is discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
航空发动机蠕变现象及其模型研究进展
飞机在飞行过程中处于高温高压条件下,容易发生蠕变现象。几位学者对这个问题进行了广泛的研究。本文对航空发动机蠕变现象的现有文献进行了全面的综述。首先列举了几种经典的蠕变计算模型,并将其分类为蠕变寿命计算、蠕变-疲劳寿命计算和蠕变变形计算。对航空发动机的涡轮叶片、涡轮盘、燃烧室等各部件的蠕变现象进行了研究。航空发动机涡轮叶片的蠕变特性得到了广泛的研究。并提出了减缓蠕变的防护措施。可采用抗蠕变性能高的材料,并可采用替代燃料。本文从有利的角度深入分析了飞机蠕变的优点。最后,展望了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
195
审稿时长
22 weeks
期刊介绍: International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles. Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to: -Mechanics of materials and structures- Aerodynamics and fluid mechanics- Dynamics and control- Aeroacoustics- Aeroelasticity- Propulsion and combustion- Avionics and systems- Flight simulation and mechanics- Unmanned air vehicles (UAVs). Review articles on any of the above topics are also welcome.
期刊最新文献
Comparative Study and Airspeed Sensitivity Analysis of Full-Wing Solar-Powered UAVs Using Rigid-Body, Multibody, and Rigid-Flexible Combo Models Enhanced Multi-UAV Path Planning in Complex Environments With Voronoi-Based Obstacle Modelling and Q-Learning Multi-UAV Cooperative Air Combat Target Assignment Method Based on VNS-IBPSO in Complex Dynamic Environment A Sparse CoSaMP Channel Estimation Algorithm With Adaptive Variable Step Size for an OFDM System Mechanism and Application of Attitude and Orbit Coupling Dynamics for Spacecraft Proximity Relative Motion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1