Komparasi Metode Apriori dan FP-Growth Data Mining Untuk Mengetahui Pola Penjualan

Neni Purwati, Yogi Pedliyansah, Hendra Kurniawan, Sri Karnila, Riko Herwanto
{"title":"Komparasi Metode Apriori dan FP-Growth Data Mining Untuk Mengetahui Pola Penjualan","authors":"Neni Purwati, Yogi Pedliyansah, Hendra Kurniawan, Sri Karnila, Riko Herwanto","doi":"10.30591/jpit.v8i2.4876","DOIUrl":null,"url":null,"abstract":"Sales data is generally still rarely used, as well as the Perfume Corner shop just piling up in the database, even though there are problems experienced by the store regarding sales data for the best-selling products and to increase the number of sales of subsequent perfume products, so that the store can survive and develop even better. The algorithm that can be used to manage sales data to overcome this problem is Apriori. The research method used in this research is the KDD (Knowledge Discovery in Database) process. This research produces a high frequency pattern for itemsets with a minimum support value of 20% resulting in products that become The Most Tree Items namely Jo Malone 82.49%, Zarra 28.25%, and Zwitsal 20.34%. While the association rules formed from the value of Min. Supp 20% and Min. Conf 80%, get a combination of 2 itemsets, namely Jo Malone and Zarra. Whereas for the combination of 3 itemsets, namely Jo Malone, Zarra and Baccarte with valid and strong status, it is proven by a lift value greater than 1, therefore the association rules are very appropriate to be used.","PeriodicalId":53375,"journal":{"name":"Jurnal Informatika Jurnal Pengembangan IT","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika Jurnal Pengembangan IT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30591/jpit.v8i2.4876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sales data is generally still rarely used, as well as the Perfume Corner shop just piling up in the database, even though there are problems experienced by the store regarding sales data for the best-selling products and to increase the number of sales of subsequent perfume products, so that the store can survive and develop even better. The algorithm that can be used to manage sales data to overcome this problem is Apriori. The research method used in this research is the KDD (Knowledge Discovery in Database) process. This research produces a high frequency pattern for itemsets with a minimum support value of 20% resulting in products that become The Most Tree Items namely Jo Malone 82.49%, Zarra 28.25%, and Zwitsal 20.34%. While the association rules formed from the value of Min. Supp 20% and Min. Conf 80%, get a combination of 2 itemsets, namely Jo Malone and Zarra. Whereas for the combination of 3 itemsets, namely Jo Malone, Zarra and Baccarte with valid and strong status, it is proven by a lift value greater than 1, therefore the association rules are very appropriate to be used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
杏色和FP-Growth数据挖掘方法的比较,以了解销售模式
销售数据一般仍然很少使用,香水角商店只是在数据库中堆积,即使商店遇到了关于最畅销产品的销售数据和增加后续香水产品的销售数量的问题,使商店能够更好地生存和发展。可以用来管理销售数据来克服这个问题的算法是Apriori。本研究采用的研究方法是KDD (Knowledge Discovery in Database)过程。这项研究产生了一个最小支持值为20%的项目集的高频模式,导致产品成为最可树的项目,即Jo Malone 82.49%, Zarra 28.25%和Zwitsal 20.34%。而由Min. Supp的值20%和Min. Conf的值80%组成的关联规则,得到2个项目集的组合,即Jo Malone和Zarra。而对于具有有效和强状态的Jo Malone, Zarra和Baccarte 3个项目集的组合,则被一个大于1的升力值证明,因此使用关联规则是非常合适的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
KLASIFIKASI SURAT DIGITAL MENGGUNAKAN ALGORITMA MACHINE LEARNING KONTROL PENGGUNAAN LISTRIK PASCABAYAR MENGGUNAKAN ANDROID RANCANG BANGUN PENGOLES KUNING TELUR PADA ADONAN ROTI BERBASIS ARDUINO PERANCANGAN GAME EDUKASI LABIRIN MATEMATIKA DENGAN ALGORITMA LINEAR CONGRUENT METHOD BERBASIS ANDROID PERANCANGAN COMPANY PROFIL PT.FAJAR TECHNO SYSTEM BERBASIS WEB
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1