Isabel GARRIDO, Carmen M. MARTÍNEZ, Pilar FLORES, Pilar HELLÍN, Fulgencio CONTRERAS, José FENOLL
{"title":"Remediation of amide pesticide-polluted soils by combined solarization and ozonation treatment","authors":"Isabel GARRIDO, Carmen M. MARTÍNEZ, Pilar FLORES, Pilar HELLÍN, Fulgencio CONTRERAS, José FENOLL","doi":"10.1016/j.pedsph.2023.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>Agriculture has a close relationship with nature, but it can also be the source of negative and permanent environmental effects. The use of pesticides in modern agriculture is a common practice, but their side effects on the environment cannot be disregarded. In this study, we evaluated a combination of solarization and ozonation techniques for the elimination of six amide pesticides (boscalid, chlorantraniliprole, cyflufenamid, fluopyram, napropamide, and propyzamide) in soil. Initial experiments were performed with four different soils to assess the efficiency of this methodology at different soil temperatures and ozone dosages under laboratory conditions, and then a greenhouse pot experiment was conducted under controlled conditions during summer. Fifty days after the onset of the experiments, higher degradation percentages of amide pesticides were observed in ozonized soils than in other treated soils, particularly when ozone was applied at 10 cm soil depth. The results show that the utilization of ozonation, along with solarization, represents a valid method for degrading residues of the studied pesticides and suggest that this combined technology may be a promising tool for remediating pesticide-polluted soils.</p></div>","PeriodicalId":49709,"journal":{"name":"Pedosphere","volume":"34 3","pages":"Pages 641-651"},"PeriodicalIF":5.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedosphere","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100201602300022X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Agriculture has a close relationship with nature, but it can also be the source of negative and permanent environmental effects. The use of pesticides in modern agriculture is a common practice, but their side effects on the environment cannot be disregarded. In this study, we evaluated a combination of solarization and ozonation techniques for the elimination of six amide pesticides (boscalid, chlorantraniliprole, cyflufenamid, fluopyram, napropamide, and propyzamide) in soil. Initial experiments were performed with four different soils to assess the efficiency of this methodology at different soil temperatures and ozone dosages under laboratory conditions, and then a greenhouse pot experiment was conducted under controlled conditions during summer. Fifty days after the onset of the experiments, higher degradation percentages of amide pesticides were observed in ozonized soils than in other treated soils, particularly when ozone was applied at 10 cm soil depth. The results show that the utilization of ozonation, along with solarization, represents a valid method for degrading residues of the studied pesticides and suggest that this combined technology may be a promising tool for remediating pesticide-polluted soils.
期刊介绍:
PEDOSPHERE—a peer-reviewed international journal published bimonthly in English—welcomes submissions from scientists around the world under a broad scope of topics relevant to timely, high quality original research findings, especially up-to-date achievements and advances in the entire field of soil science studies dealing with environmental science, ecology, agriculture, bioscience, geoscience, forestry, etc. It publishes mainly original research articles as well as some reviews, mini reviews, short communications and special issues.