Florica Voiţă-Mekereş, Gabriel Mihai Mekeres, Ioan Bogdan Voiță, Larisa Bianca Galea-Holhoș, Felicia Manole
{"title":"A Review of the Protective Effects of Nanoparticles in the Treatment of Nervous System Injuries","authors":"Florica Voiţă-Mekereş, Gabriel Mihai Mekeres, Ioan Bogdan Voiță, Larisa Bianca Galea-Holhoș, Felicia Manole","doi":"10.51847/6uqsavjhzs","DOIUrl":null,"url":null,"abstract":"One of the most vital organs in the body is the nervous system. Damage to the nervous system may lead to a variety of issues and illnesses in people, and each year, both the affected person and society incur significant financial, human-life, and spiritual expenses as a result. Although the activity in the field of nerve repair and regeneration is growing rapidly, until now, nerve repair is not done completely. A chain of events, including inflammation, elevated oxidative stress, and the progression of damage, occur after the initial insult to the nervous system. Damage to mitochondria, proteins, and cell membrane structures, damage to adipose tissue, and eventually illnesses of the nervous system can all be a result of oxidative stress, which is brought on by an imbalance between the creation of free radicals and metabolic responses. As a result of inadequate antioxidant levels or excessive formation of free radicals, damage to nerve cells might worsen. Nerve cells require a lot of oxygen and antioxidants. To stop oxidative stress and its harmful consequences, antioxidants—either synthetic or natural—must be used. In this context, the treatment of illnesses of the neurological system may hold promise for nanoparticles with a long half-life. As a result, the biological use of nanoparticles has been stressed as a novel therapeutic strategy for the treatment of neurological disorders and lesions, which is still in its early phases. Therefore, the purpose of this review is to ascertain how protective nanoparticles are in the therapy of nervous system damage.","PeriodicalId":46106,"journal":{"name":"International Journal of Pharmaceutical Research and Allied Sciences","volume":"90 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutical Research and Allied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51847/6uqsavjhzs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
One of the most vital organs in the body is the nervous system. Damage to the nervous system may lead to a variety of issues and illnesses in people, and each year, both the affected person and society incur significant financial, human-life, and spiritual expenses as a result. Although the activity in the field of nerve repair and regeneration is growing rapidly, until now, nerve repair is not done completely. A chain of events, including inflammation, elevated oxidative stress, and the progression of damage, occur after the initial insult to the nervous system. Damage to mitochondria, proteins, and cell membrane structures, damage to adipose tissue, and eventually illnesses of the nervous system can all be a result of oxidative stress, which is brought on by an imbalance between the creation of free radicals and metabolic responses. As a result of inadequate antioxidant levels or excessive formation of free radicals, damage to nerve cells might worsen. Nerve cells require a lot of oxygen and antioxidants. To stop oxidative stress and its harmful consequences, antioxidants—either synthetic or natural—must be used. In this context, the treatment of illnesses of the neurological system may hold promise for nanoparticles with a long half-life. As a result, the biological use of nanoparticles has been stressed as a novel therapeutic strategy for the treatment of neurological disorders and lesions, which is still in its early phases. Therefore, the purpose of this review is to ascertain how protective nanoparticles are in the therapy of nervous system damage.