FCAODNet: a fast freight train image detection model based on embedded FCA

IF 1.4 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Computational Science and Engineering Pub Date : 2023-01-01 DOI:10.1504/ijcse.2023.133692
Longxin Zhang, Peng Zhou, Miao Wang, Chengkang Weng, Xiaojun Deng
{"title":"FCAODNet: a fast freight train image detection model based on embedded FCA","authors":"Longxin Zhang, Peng Zhou, Miao Wang, Chengkang Weng, Xiaojun Deng","doi":"10.1504/ijcse.2023.133692","DOIUrl":null,"url":null,"abstract":"The fault detection of freight train image has some problems, such as low detection accuracy and slow detection speed. Aiming at the problem of slow detection speed in the process of train image fault detection, a lightweight object detection model fast channel attention network (FCAODNet) is proposed in this study. FCAODNet consists of four modules, including feature extraction network (FEN), lightweight multi-scale feature fusion (LMFF), prediction across scales (PAS), and decoding modules. FEN extracts image features, LMFF fuses features, PAS predicts the location of the target object, and the decoding module obtains the final prediction result. FCAODNet's FEN adopts CSPDarknet53tiny. The designed LMFF is embedded with two FCA modules to improve the detection accuracy. Experiments on train datasets and public datasets show that FCAODNet outperforms other state-of-the-art models in detection speed and has good detection accuracy and robustness.","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcse.2023.133692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The fault detection of freight train image has some problems, such as low detection accuracy and slow detection speed. Aiming at the problem of slow detection speed in the process of train image fault detection, a lightweight object detection model fast channel attention network (FCAODNet) is proposed in this study. FCAODNet consists of four modules, including feature extraction network (FEN), lightweight multi-scale feature fusion (LMFF), prediction across scales (PAS), and decoding modules. FEN extracts image features, LMFF fuses features, PAS predicts the location of the target object, and the decoding module obtains the final prediction result. FCAODNet's FEN adopts CSPDarknet53tiny. The designed LMFF is embedded with two FCA modules to improve the detection accuracy. Experiments on train datasets and public datasets show that FCAODNet outperforms other state-of-the-art models in detection speed and has good detection accuracy and robustness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FCAODNet:基于嵌入式FCA的快速货运列车图像检测模型
货运列车图像的故障检测存在检测精度低、检测速度慢等问题。针对列车图像故障检测过程中检测速度慢的问题,提出了一种轻量级的目标检测模型快速通道关注网络(FCAODNet)。FCAODNet由特征提取网络(FEN)、轻量级多尺度特征融合(LMFF)、跨尺度预测(PAS)和解码四个模块组成。FEN提取图像特征,LMFF融合特征,PAS预测目标物体位置,解码模块得到最终预测结果。FCAODNet的FEN采用CSPDarknet53tiny。设计的LMFF内嵌两个FCA模块,提高了检测精度。在列车数据集和公共数据集上的实验表明,FCAODNet在检测速度上优于其他最先进的模型,具有良好的检测精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computational Science and Engineering
International Journal of Computational Science and Engineering COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.00
自引率
40.00%
发文量
73
期刊介绍: Computational science and engineering is an emerging and promising discipline in shaping future research and development activities in both academia and industry, in fields ranging from engineering, science, finance, and economics, to arts and humanities. New challenges arise in the modelling of complex systems, sophisticated algorithms, advanced scientific and engineering computing and associated (multidisciplinary) problem-solving environments. Because the solution of large and complex problems must cope with tight timing schedules, powerful algorithms and computational techniques, are inevitable. IJCSE addresses the state of the art of all aspects of computational science and engineering with emphasis on computational methods and techniques for science and engineering applications.
期刊最新文献
Integer wavelet transform based data hiding scheme for electrocardiogram signals protection Integrated power information operation and maintenance system based on D3QN algorithm with experience replay Availability assessment and sensitivity analysis of an MBaaS platform SLIC-SSA: an image segmentation method based on superpixel and sparrow search algorithm Time series models for web service activity prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1