{"title":"Optimization for biohydrogen purification process by chemical absorption techniques","authors":"Wichayaporn Chusut, Suwimon Kanchanasuta, Duangrat Inthorn","doi":"10.1186/s42834-023-00196-5","DOIUrl":null,"url":null,"abstract":"Abstract Palm oil decanter cake and crude glycerol, which are characterized by their highly biodegradable organic content and nutrient-rich composition, are attractive ingredients for biohydrogen production. In this experiment, we investigated (1) how to produce hydrogen more effectively by co-fermenting palm oil decanter cake and crude glycerol and (2) how to improve the quality of the hydrogen gas produced via chemical absorption technology. This study was divided into two parts. In the first part, the co-fermentation was conducted with a fixed decanter cake concentration of 1% total solids (TS) w/v and variable crude glycerol concentrations (0.25–2.0% w/v). The results showed that maximum biohydrogen production was achieved with 2.0% w/v crude glycerol, which had a hydrogen yield of 131 L kg −1 TS added and a hydrogen productivity of 1310 mL L −1 d −1 . In the second part of the experiment, biohydrogen purification was conducted using the chemical absorption technique by varying four different alkaline solutions: mono ethanolamine (MEA), ammonia (NH 3 ), sodium hydroxide (NaOH), and potassium hydroxide (KOH). The highest hydrogen purity of 98.9% v/v was reached with the MEA solution at a 5 M concentration and a 280 mL min −1 feed mixed gas flow rate for an absorption time of 5 min. However, to achieve sustainable waste management in palm oil mill plants, the feasibility of integrating the biohydrogen production process with palm oil mill effluent from the biogas plants and applying a hydrogen gas quality improvement system need to be investigated further.","PeriodicalId":22130,"journal":{"name":"Sustainable Environment Research","volume":"42 4 1","pages":"0"},"PeriodicalIF":4.6000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Environment Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42834-023-00196-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Palm oil decanter cake and crude glycerol, which are characterized by their highly biodegradable organic content and nutrient-rich composition, are attractive ingredients for biohydrogen production. In this experiment, we investigated (1) how to produce hydrogen more effectively by co-fermenting palm oil decanter cake and crude glycerol and (2) how to improve the quality of the hydrogen gas produced via chemical absorption technology. This study was divided into two parts. In the first part, the co-fermentation was conducted with a fixed decanter cake concentration of 1% total solids (TS) w/v and variable crude glycerol concentrations (0.25–2.0% w/v). The results showed that maximum biohydrogen production was achieved with 2.0% w/v crude glycerol, which had a hydrogen yield of 131 L kg −1 TS added and a hydrogen productivity of 1310 mL L −1 d −1 . In the second part of the experiment, biohydrogen purification was conducted using the chemical absorption technique by varying four different alkaline solutions: mono ethanolamine (MEA), ammonia (NH 3 ), sodium hydroxide (NaOH), and potassium hydroxide (KOH). The highest hydrogen purity of 98.9% v/v was reached with the MEA solution at a 5 M concentration and a 280 mL min −1 feed mixed gas flow rate for an absorption time of 5 min. However, to achieve sustainable waste management in palm oil mill plants, the feasibility of integrating the biohydrogen production process with palm oil mill effluent from the biogas plants and applying a hydrogen gas quality improvement system need to be investigated further.
期刊介绍:
The primary goal of Sustainable Environment Research (SER) is to publish high quality research articles associated with sustainable environmental science and technology and to contribute to improving environmental practice. The scope of SER includes issues of environmental science, technology, management and related fields, especially in response to sustainable water, energy and other natural resources. Potential topics include, but are not limited to: 1. Water and Wastewater • Biological processes • Physical and chemical processes • Watershed management • Advanced and innovative treatment 2. Soil and Groundwater Pollution • Contaminant fate and transport processes • Contaminant site investigation technology • Soil and groundwater remediation technology • Risk assessment in contaminant sites 3. Air Pollution and Climate Change • Ambient air quality management • Greenhouse gases control • Gaseous and particulate pollution control • Indoor air quality management and control 4. Waste Management • Waste reduction and minimization • Recourse recovery and conservation • Solid waste treatment technology and disposal 5. Energy and Resources • Sustainable energy • Local, regional and global sustainability • Environmental management system • Life-cycle assessment • Environmental policy instruments