{"title":"Task scheduling and data replication in cloud with improved correlation strategy","authors":"D Rambabu, A Govardhan","doi":"10.1080/1206212x.2023.2267840","DOIUrl":null,"url":null,"abstract":"AbstractCloud providers frequently utilize two tightly coupled resource management strategies like task scheduling & data replication to boost the performance of the system generally, guaranteeing service level agreement (SLA) compliance, as well as protecting their own financial gain. An Improved Correlation strategy-based Task Scheduling and Data Replication in Cloud (ICTSDC) is what this work aims to give. The suggested system's primary phases are as follows: Management of replication and task scheduling. Initial job scheduling will be optimization-based and take into account goals such bottleneck value, migration cost, VM load, enhanced correlation, and replication, respectively. For this, a brand-new extended DMO algorithm called Self-adaptive Dwarf Mongoose Optimization (SADMO) is presented. In the replication management stage, the potential copies must first be identified based on the prior objective. The suggested SADMO model implements the optimization technique for replica placement throughout the replication management process. The outcomes of the ICTSDC technique are evaluated to other methods using a variety of metrics, like bottleneck value, migration cost, Virtual Machine (VM) load, improved correlation, as well as replication efficiency. A lower mean value of 0.324 is gained with the ICTSDC scheme for fitness.KEYWORDS: Task schedulingdata replicationcloudimproved correlationoptimization Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":39673,"journal":{"name":"International Journal of Computers and Applications","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1206212x.2023.2267840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractCloud providers frequently utilize two tightly coupled resource management strategies like task scheduling & data replication to boost the performance of the system generally, guaranteeing service level agreement (SLA) compliance, as well as protecting their own financial gain. An Improved Correlation strategy-based Task Scheduling and Data Replication in Cloud (ICTSDC) is what this work aims to give. The suggested system's primary phases are as follows: Management of replication and task scheduling. Initial job scheduling will be optimization-based and take into account goals such bottleneck value, migration cost, VM load, enhanced correlation, and replication, respectively. For this, a brand-new extended DMO algorithm called Self-adaptive Dwarf Mongoose Optimization (SADMO) is presented. In the replication management stage, the potential copies must first be identified based on the prior objective. The suggested SADMO model implements the optimization technique for replica placement throughout the replication management process. The outcomes of the ICTSDC technique are evaluated to other methods using a variety of metrics, like bottleneck value, migration cost, Virtual Machine (VM) load, improved correlation, as well as replication efficiency. A lower mean value of 0.324 is gained with the ICTSDC scheme for fitness.KEYWORDS: Task schedulingdata replicationcloudimproved correlationoptimization Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
The International Journal of Computers and Applications (IJCA) is a unique platform for publishing novel ideas, research outcomes and fundamental advances in all aspects of Computer Science, Computer Engineering, and Computer Applications. This is a peer-reviewed international journal with a vision to provide the academic and industrial community a platform for presenting original research ideas and applications. IJCA welcomes four special types of papers in addition to the regular research papers within its scope: (a) Papers for which all results could be easily reproducible. For such papers, the authors will be asked to upload "instructions for reproduction'''', possibly with the source codes or stable URLs (from where the codes could be downloaded). (b) Papers with negative results. For such papers, the experimental setting and negative results must be presented in detail. Also, why the negative results are important for the research community must be explained clearly. The rationale behind this kind of paper is that this would help researchers choose the correct approaches to solve problems and avoid the (already worked out) failed approaches. (c) Detailed report, case study and literature review articles about innovative software / hardware, new technology, high impact computer applications and future development with sufficient background and subject coverage. (d) Special issue papers focussing on a particular theme with significant importance or papers selected from a relevant conference with sufficient improvement and new material to differentiate from the papers published in a conference proceedings.