Nothing new under the sun: Medical professional maintenance in the face of artificial intelligence's disruption

IF 6.5 1区 社会学 Q1 SOCIAL SCIENCES, INTERDISCIPLINARY Big Data & Society Pub Date : 2023-07-01 DOI:10.1177/20539517231210269
Netta Avnoon, Amalya L Oliver
{"title":"Nothing new under the sun: Medical professional maintenance in the face of artificial intelligence's disruption","authors":"Netta Avnoon, Amalya L Oliver","doi":"10.1177/20539517231210269","DOIUrl":null,"url":null,"abstract":"This paper follows the reaction of the radiology profession to artificial intelligence (AI). We examine the effort of radiology as a powerful medical specialty to maintain its professional jurisdiction while allowing AI's disruption. We study the discursive work of radiologists as evident in their academic publications. Our results suggest that radiologists hold simultaneously multiple perspectives in regard to AI, which allow them to be both conservative and innovative in their relations to it: accept it, subordinate it, reject it and surrender to it, all the same time. These perspectives are: (a) to integrate AI tools and skills into the radiology profession by cooperating and coproducing with AI experts while preserving the core values and structures of the radiology profession; (b) to absorb AI into radiology as (yet another) technology, subordinating it to radiologists’ authority; (c) to fight-off the threat made by AI by undermining the legitimacy and capabilities of AI in radiology and strengthening professional boundaries and (d) to assimilate the radiology profession into the field of AI. These perspectives enable radiologists as a powerful medical specialty to engage in a rhetorical dance with the equally powerful AI specialty and challenge techno-optimistic approaches to innovation.","PeriodicalId":47834,"journal":{"name":"Big Data & Society","volume":"158 1","pages":"0"},"PeriodicalIF":6.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data & Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20539517231210269","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper follows the reaction of the radiology profession to artificial intelligence (AI). We examine the effort of radiology as a powerful medical specialty to maintain its professional jurisdiction while allowing AI's disruption. We study the discursive work of radiologists as evident in their academic publications. Our results suggest that radiologists hold simultaneously multiple perspectives in regard to AI, which allow them to be both conservative and innovative in their relations to it: accept it, subordinate it, reject it and surrender to it, all the same time. These perspectives are: (a) to integrate AI tools and skills into the radiology profession by cooperating and coproducing with AI experts while preserving the core values and structures of the radiology profession; (b) to absorb AI into radiology as (yet another) technology, subordinating it to radiologists’ authority; (c) to fight-off the threat made by AI by undermining the legitimacy and capabilities of AI in radiology and strengthening professional boundaries and (d) to assimilate the radiology profession into the field of AI. These perspectives enable radiologists as a powerful medical specialty to engage in a rhetorical dance with the equally powerful AI specialty and challenge techno-optimistic approaches to innovation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳底下没有什么新鲜事:面对人工智能的颠覆,医疗专业维护
本文跟踪了放射专业对人工智能(AI)的反应。我们研究了放射学作为一门强大的医学专业,在允许人工智能中断的同时保持其专业管辖权的努力。我们研究放射科医生的话语工作,这在他们的学术出版物中很明显。我们的研究结果表明,放射科医生对人工智能同时持有多种观点,这使他们在与人工智能的关系中既保守又创新:接受它、服从它、拒绝它、屈服于它,所有这些都是同时进行的。这些观点是:(a)通过与人工智能专家合作和共同生产,将人工智能工具和技能融入放射专业,同时保留放射专业的核心价值和结构;(b)将人工智能作为(另一种)技术吸收到放射学中,使其服从放射科医生的权威;(c)通过削弱人工智能在放射学中的合法性和能力以及加强专业界限来抵御人工智能带来的威胁;(d)将放射学专业纳入人工智能领域。这些观点使放射科医生作为一个强大的医学专业,能够与同样强大的人工智能专业进行修辞舞蹈,并挑战技术乐观的创新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Big Data & Society
Big Data & Society SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
10.90
自引率
10.60%
发文量
59
审稿时长
11 weeks
期刊介绍: Big Data & Society (BD&S) is an open access, peer-reviewed scholarly journal that publishes interdisciplinary work principally in the social sciences, humanities, and computing and their intersections with the arts and natural sciences. The journal focuses on the implications of Big Data for societies and aims to connect debates about Big Data practices and their effects on various sectors such as academia, social life, industry, business, and government. BD&S considers Big Data as an emerging field of practices, not solely defined by but generative of unique data qualities such as high volume, granularity, data linking, and mining. The journal pays attention to digital content generated both online and offline, encompassing social media, search engines, closed networks (e.g., commercial or government transactions), and open networks like digital archives, open government, and crowdsourced data. Rather than providing a fixed definition of Big Data, BD&S encourages interdisciplinary inquiries, debates, and studies on various topics and themes related to Big Data practices. BD&S seeks contributions that analyze Big Data practices, involve empirical engagements and experiments with innovative methods, and reflect on the consequences of these practices for the representation, realization, and governance of societies. As a digital-only journal, BD&S's platform can accommodate multimedia formats such as complex images, dynamic visualizations, videos, and audio content. The contents of the journal encompass peer-reviewed research articles, colloquia, bookcasts, think pieces, state-of-the-art methods, and work by early career researchers.
期刊最新文献
Is there a role of the kidney failure risk equation in optimizing timing of vascular access creation in pre-dialysis patients? From rules to examples: Machine learning's type of authority Outlier bias: AI classification of curb ramps, outliers, and context Artificial intelligence and skills in the workplace: An integrative research agenda Redress and worldmaking: Differing approaches to algorithmic reparations for housing justice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1