None Hassan S. Ahmed, None Ahmed J. Abid, None Adel A. Obed, None Ameer L. Saleh, None Reheel J. Hassoon
{"title":"Maximizing Energy Output of Photovoltaic Systems: Hybrid PSO-GWO-CS Optimization Approach","authors":"None Hassan S. Ahmed, None Ahmed J. Abid, None Adel A. Obed, None Ameer L. Saleh, None Reheel J. Hassoon","doi":"10.51173/jt.v5i3.1312","DOIUrl":null,"url":null,"abstract":"Photovoltaic (PV) systems suffer from partial shade and nonuniform irradiance conditions. Meanwhile, each PV module has a bypass shunt diode (BSD) to prevent hotspots. BSD also causes a series of a peak in the power-voltage characteristics of the PV array, trapping traditional maximum Power Point Tracking (MPPT) methods in local peaks. This study aims to address these challenges by combining cuckoo search (CS), gray wolf optimization (GWO), and particle swarm optimization (PSO) to enhance MPPT performance. The results compared the yield power by Tracking the MPP using only GWO, CS, or PSO MPPT techniques and combining them. Results show that in four cases: in case 1) Uniform Irradiation in three patterns (High, Medium, and Low), In case 2) Fixed Nonuniform Irradiation, While In case 3) Slow Dynamic Nonuniform Irradiation and case 4) ) Fast Dynamic nonuniform irradiation. The efficiency (PSO + CS) 97.86%, (PSO + GWO) 97.74%, and (GWO + CS) 98.55% were the highest performers in the case 1 results in (high, medium, and low), respectively. In Case 2, the efficiency (GWO + CS) is 98.62%, and it operates more effectively under fixed nonuniform irradiance. It has the highest efficiency in both Cases 3 and 4, even though its respective PSO + GWO efficiencies are 97.45% and 97.26%. Based on these results, a hybrid mode of merging algorithms based on weather radiation conditions is proposed.","PeriodicalId":39617,"journal":{"name":"Journal of Biomolecular Techniques","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51173/jt.v5i3.1312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Photovoltaic (PV) systems suffer from partial shade and nonuniform irradiance conditions. Meanwhile, each PV module has a bypass shunt diode (BSD) to prevent hotspots. BSD also causes a series of a peak in the power-voltage characteristics of the PV array, trapping traditional maximum Power Point Tracking (MPPT) methods in local peaks. This study aims to address these challenges by combining cuckoo search (CS), gray wolf optimization (GWO), and particle swarm optimization (PSO) to enhance MPPT performance. The results compared the yield power by Tracking the MPP using only GWO, CS, or PSO MPPT techniques and combining them. Results show that in four cases: in case 1) Uniform Irradiation in three patterns (High, Medium, and Low), In case 2) Fixed Nonuniform Irradiation, While In case 3) Slow Dynamic Nonuniform Irradiation and case 4) ) Fast Dynamic nonuniform irradiation. The efficiency (PSO + CS) 97.86%, (PSO + GWO) 97.74%, and (GWO + CS) 98.55% were the highest performers in the case 1 results in (high, medium, and low), respectively. In Case 2, the efficiency (GWO + CS) is 98.62%, and it operates more effectively under fixed nonuniform irradiance. It has the highest efficiency in both Cases 3 and 4, even though its respective PSO + GWO efficiencies are 97.45% and 97.26%. Based on these results, a hybrid mode of merging algorithms based on weather radiation conditions is proposed.
期刊介绍:
The Journal of Biomolecular Techniques is a peer-reviewed publication issued five times a year by the Association of Biomolecular Resource Facilities. The Journal was established to promote the central role biotechnology plays in contemporary research activities, to disseminate information among biomolecular resource facilities, and to communicate the biotechnology research conducted by the Association’s Research Groups and members, as well as other investigators.