Stock market alphas help predict macroeconomic innovations

IF 0.7 4区 经济学 Q3 ECONOMICS Macroeconomic Dynamics Pub Date : 2023-05-17 DOI:10.1017/s1365100523000184
Mao-Wei Hung, Andy Jia-Yuh Yeh
{"title":"Stock market alphas help predict macroeconomic innovations","authors":"Mao-Wei Hung, Andy Jia-Yuh Yeh","doi":"10.1017/s1365100523000184","DOIUrl":null,"url":null,"abstract":"Abstract We extract dynamic conditional factor premiums from the Fama-French factor model and find that most anomalies disappear after one accounts for time variation in these premiums. Vector autoregression evidence shows that mutual causation between dynamic conditional alphas and macroeconomic surprises serves as a core qualifying condition for fundamental factor selection. This economic insight is an incremental step toward drawing a distinction between rational risk and behavioral mispricing models. To the extent that dynamic conditional alphas can reveal the marginal investor’s fundamental news and expectations about the cross-section of average asset returns, our economic insight helps enrich macroeconomic asset return prediction.","PeriodicalId":18078,"journal":{"name":"Macroeconomic Dynamics","volume":"44 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macroeconomic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1365100523000184","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We extract dynamic conditional factor premiums from the Fama-French factor model and find that most anomalies disappear after one accounts for time variation in these premiums. Vector autoregression evidence shows that mutual causation between dynamic conditional alphas and macroeconomic surprises serves as a core qualifying condition for fundamental factor selection. This economic insight is an incremental step toward drawing a distinction between rational risk and behavioral mispricing models. To the extent that dynamic conditional alphas can reveal the marginal investor’s fundamental news and expectations about the cross-section of average asset returns, our economic insight helps enrich macroeconomic asset return prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
股市alpha有助于预测宏观经济创新
摘要本文从Fama-French因子模型中提取动态条件因子溢价,发现在这些溢价中考虑时间变化后,大多数异常消失。向量自回归证据表明,动态条件阿尔法和宏观经济意外之间的相互因果关系是基本因素选择的核心资格条件。这种经济洞察力是在区分理性风险和行为错误定价模型方面迈出的一步。在某种程度上,动态条件阿尔法可以揭示边际投资者对平均资产收益横截面的基本信息和预期,我们的经济洞察力有助于丰富宏观经济资产收益预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
11.10%
发文量
59
期刊介绍: Macroeconomic Dynamics publishes theoretical, empirical or quantitative research of the highest standard. Papers are welcomed from all areas of macroeconomics and from all parts of the world. Major advances in macroeconomics without immediate policy applications will also be accepted, if they show potential for application in the future. Occasional book reviews, announcements, conference proceedings, special issues, interviews, dialogues, and surveys are also published.
期刊最新文献
Nonseparability of credit card services within Divisia monetary aggregates Money growth and inflation in the Euro Area, UK, and USA: measurement issues and recent results Is the working capital channel of the monetary policy quantitatively relevant? A structural estimation approach Uncertainty shocks and monetary policy rules in a small open economy Economic resilience and the dynamics of capital stock
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1