Organic matter enrichment and paleo-sedimentary environment reconstruction of lacustrine shale in the second member of the Middle Jurassic Qiketai Formation in Shengbei Sub-sag, Turpan-Hami Basin, northwest China
Boran Wang, Zhilong Huang, Tianjun Li, Guobin Fu, Jingyi Yan
{"title":"Organic matter enrichment and paleo-sedimentary environment reconstruction of lacustrine shale in the second member of the Middle Jurassic Qiketai Formation in Shengbei Sub-sag, Turpan-Hami Basin, northwest China","authors":"Boran Wang, Zhilong Huang, Tianjun Li, Guobin Fu, Jingyi Yan","doi":"10.1144/jgs2023-093","DOIUrl":null,"url":null,"abstract":"Lacustrine organic-rich shales in the second member of the Jurassic Qiketai Formation (J 2 q 2 ) in the Shengbei Sub-sag, Turpan-Hami basin, northwest China exhibit strong heterogeneity due to frequent alternations of sedimentary environments. The distinct shale environments present in both upper and lower units of J 2 q 2 provide an ideal example for studying the enrichment mechanism of organic matter (OM) under a complex sedimentary background. In this study, petrological, mineralogical, major/trace element, and isotopic analyses were used to reconstruct the paleo-environment and reveal the mechanisms of OM enrichment. The results indicate that the J 2 q 2 shale was deposited in a lacustrine mixed carbonate-siliciclastic environment and the paleo-environment indicators suggesting an oxic-dysoxic, mildly brackish water condition. Based on a comprehensive comparison of both members of J 2 q 2 , an OM enrichment model was established and the main controlling factor of the formation of the organic-rich shale is elucidated. Under the background of a warm-humid climate, the lower unit of J 2 q 2 was deposited in a deeper and more restricted water body with stronger chemical weathering, resulting in limited terrestrial input compared to that of the upper unit. The inorganic geochemical analysis indicates a higher primary productivity in the lower unit of J 2 q 2 with local fluctuations. High primary productivity and favorable preservation conditions domain the OM enrichment in the study area. Supplementary material: https://doi.org/10.6084/m9.figshare.c.6901480","PeriodicalId":17320,"journal":{"name":"Journal of the Geological Society","volume":"326 ","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Geological Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1144/jgs2023-093","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lacustrine organic-rich shales in the second member of the Jurassic Qiketai Formation (J 2 q 2 ) in the Shengbei Sub-sag, Turpan-Hami basin, northwest China exhibit strong heterogeneity due to frequent alternations of sedimentary environments. The distinct shale environments present in both upper and lower units of J 2 q 2 provide an ideal example for studying the enrichment mechanism of organic matter (OM) under a complex sedimentary background. In this study, petrological, mineralogical, major/trace element, and isotopic analyses were used to reconstruct the paleo-environment and reveal the mechanisms of OM enrichment. The results indicate that the J 2 q 2 shale was deposited in a lacustrine mixed carbonate-siliciclastic environment and the paleo-environment indicators suggesting an oxic-dysoxic, mildly brackish water condition. Based on a comprehensive comparison of both members of J 2 q 2 , an OM enrichment model was established and the main controlling factor of the formation of the organic-rich shale is elucidated. Under the background of a warm-humid climate, the lower unit of J 2 q 2 was deposited in a deeper and more restricted water body with stronger chemical weathering, resulting in limited terrestrial input compared to that of the upper unit. The inorganic geochemical analysis indicates a higher primary productivity in the lower unit of J 2 q 2 with local fluctuations. High primary productivity and favorable preservation conditions domain the OM enrichment in the study area. Supplementary material: https://doi.org/10.6084/m9.figshare.c.6901480
期刊介绍:
Journal of the Geological Society (JGS) is owned and published by the Geological Society of London.
JGS publishes topical, high-quality recent research across the full range of Earth Sciences. Papers are interdisciplinary in nature and emphasize the development of an understanding of fundamental geological processes. Broad interest articles that refer to regional studies, but which extend beyond their geographical context are also welcomed.
Each year JGS presents the ‘JGS Early Career Award'' for papers published in the journal, which rewards the writing of well-written, exciting papers from early career geologists.
The journal publishes research and invited review articles, discussion papers and thematic sets.