Model-based Data Center Cooling Controls Comparative Co-design

IF 1.7 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Science and Technology for the Built Environment Pub Date : 2023-11-03 DOI:10.1080/23744731.2023.2276011
Milica Grahovac, Paul Ehrlich, Jianjun Hu, Michael Wetter
{"title":"Model-based Data Center Cooling Controls Comparative Co-design","authors":"Milica Grahovac, Paul Ehrlich, Jianjun Hu, Michael Wetter","doi":"10.1080/23744731.2023.2276011","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe paper presents a comparative simulation-based control logic design process. It uses the Control Description Language (CDL) and the ASHRAE Guideline 36 high-performing building control sequences with the Modelica Buildings Library (MBL) to demonstrate a comparative analysis of two control designs for a data center chilled water plant.Details include a description of the closed-loop plant and control design methodology, including sizing and parameterization, base and alternative (Guideline 36) control logic with software implementation structure, and outline the simulation experimentation process. The selected control designs are paired with comparable chilled water plant configurations. The models include a chiller, a water-side economizer, and an evaporative cooling tower. The plant provides cooling at 27°C zone supply air temperature to a data center in Sacramento, CA, USA.The comparative simulation results examined the impacts of a selected control logic detail, and present an example model-based design application. Overall, the simulation results showed a 25% annual and a 18% summer energy use reduction for alternative controls.This shows that simulation-based control logic design performance evaluation can improve energy efficiency and resilience aspects of system controls at large.Units and additional abbreviations are provided directly in the text where needed.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.","PeriodicalId":21556,"journal":{"name":"Science and Technology for the Built Environment","volume":"54 4","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology for the Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23744731.2023.2276011","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACTThe paper presents a comparative simulation-based control logic design process. It uses the Control Description Language (CDL) and the ASHRAE Guideline 36 high-performing building control sequences with the Modelica Buildings Library (MBL) to demonstrate a comparative analysis of two control designs for a data center chilled water plant.Details include a description of the closed-loop plant and control design methodology, including sizing and parameterization, base and alternative (Guideline 36) control logic with software implementation structure, and outline the simulation experimentation process. The selected control designs are paired with comparable chilled water plant configurations. The models include a chiller, a water-side economizer, and an evaporative cooling tower. The plant provides cooling at 27°C zone supply air temperature to a data center in Sacramento, CA, USA.The comparative simulation results examined the impacts of a selected control logic detail, and present an example model-based design application. Overall, the simulation results showed a 25% annual and a 18% summer energy use reduction for alternative controls.This shows that simulation-based control logic design performance evaluation can improve energy efficiency and resilience aspects of system controls at large.Units and additional abbreviations are provided directly in the text where needed.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型的数据中心冷却控制比较协同设计
摘要本文提出了一种基于比较仿真的控制逻辑设计过程。它使用控制描述语言(CDL)和ASHRAE指南36高性能建筑控制序列以及Modelica建筑库(MBL)来演示数据中心冷冻水厂的两种控制设计的比较分析。详细内容包括对闭环装置和控制设计方法的描述,包括尺寸和参数化,基础和替代(指南36)控制逻辑与软件实现结构,并概述仿真实验过程。选定的控制设计与可比的冷冻水厂配置配对。这些模型包括一个冷水机、一个水侧省煤器和一个蒸发冷却塔。该工厂为美国加利福尼亚州萨克拉门托的一个数据中心提供27°C区域送风温度的冷却。对比仿真结果检验了所选控制逻辑细节的影响,并给出了一个基于模型的设计应用实例。总体而言,模拟结果显示,替代控制每年减少25%的能源使用,夏季减少18%的能源使用。这表明基于仿真的控制逻辑设计性能评估可以在很大程度上提高系统控制的能源效率和弹性。在需要的地方,在文本中直接提供了单位和额外的缩写。免责声明作为对作者和研究人员的服务,我们提供了这个版本的已接受的手稿(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science and Technology for the Built Environment
Science and Technology for the Built Environment THERMODYNAMICSCONSTRUCTION & BUILDING TECH-CONSTRUCTION & BUILDING TECHNOLOGY
CiteScore
4.30
自引率
5.30%
发文量
78
期刊介绍: Science and Technology for the Built Environment (formerly HVAC&R Research) is ASHRAE’s archival research publication, offering comprehensive reporting of original research in science and technology related to the stationary and mobile built environment, including indoor environmental quality, thermodynamic and energy system dynamics, materials properties, refrigerants, renewable and traditional energy systems and related processes and concepts, integrated built environmental system design approaches and tools, simulation approaches and algorithms, building enclosure assemblies, and systems for minimizing and regulating space heating and cooling modes. The journal features review articles that critically assess existing literature and point out future research directions.
期刊最新文献
Assessing the emissions reduction potential and economic feasibility of small-scale (<100 kWe) combined heat and power systems with thermal storage for multi-family residential applications in the United States Advanced co-simulation framework for assessing the interplay between occupant behaviors and demand flexibility in commercial buildings Ground heat exchanger design tool with RowWise placement of boreholes Socioeconomic factors influencing residential occupancy trends during and post COVID pandemic Buildings XV Conference Special Issue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1