How highly efficient power electronics transfers high electrocaloric material performance to heat pump systems

IF 0.8 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY MRS Advances Pub Date : 2023-10-31 DOI:10.1557/s43580-023-00670-7
Stefan Mönch, Richard Reiner, Patrick Waltereit, Michael Basler, Rüdiger Quay, Sylvia Gebhardt, Christian Molin, David Bach, Roland Binninger, Kilian Bartholomé
{"title":"How highly efficient power electronics transfers high electrocaloric material performance to heat pump systems","authors":"Stefan Mönch, Richard Reiner, Patrick Waltereit, Michael Basler, Rüdiger Quay, Sylvia Gebhardt, Christian Molin, David Bach, Roland Binninger, Kilian Bartholomé","doi":"10.1557/s43580-023-00670-7","DOIUrl":null,"url":null,"abstract":"Abstract Electrocaloric heat pumps for cooling or heating are an emerging emission-free technology, which could replace vapor-compression systems, harmful refrigerants, and mechanical compressors by a solid-state solution with theoretically even higher coefficient of performance. Existing electrocaloric ceramics could reach around 85% of the Carnot-limit, and existing electrocaloric polymers could enable a compact and high power density system. However, the performance of published system demonstrators stays significantly below this performance, partly because of the external electronic charging loss (cyclic charging/discharging of electrocaloric capacitors). This work analyzes how the latest 99.74% ultra-efficient power electronics enables to maintain a high performance even at the system level. A first-principle analysis on material and system parameters also shows the effect of significantly different material properties of ceramics (PMN, PST) and PVDF-based polymers on system parameters. A system benchmark provides insight into system characteristics not covered by material analysis. Graphical abstract","PeriodicalId":19015,"journal":{"name":"MRS Advances","volume":"207 ","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/s43580-023-00670-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Electrocaloric heat pumps for cooling or heating are an emerging emission-free technology, which could replace vapor-compression systems, harmful refrigerants, and mechanical compressors by a solid-state solution with theoretically even higher coefficient of performance. Existing electrocaloric ceramics could reach around 85% of the Carnot-limit, and existing electrocaloric polymers could enable a compact and high power density system. However, the performance of published system demonstrators stays significantly below this performance, partly because of the external electronic charging loss (cyclic charging/discharging of electrocaloric capacitors). This work analyzes how the latest 99.74% ultra-efficient power electronics enables to maintain a high performance even at the system level. A first-principle analysis on material and system parameters also shows the effect of significantly different material properties of ceramics (PMN, PST) and PVDF-based polymers on system parameters. A system benchmark provides insight into system characteristics not covered by material analysis. Graphical abstract
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效电力电子如何将高电热材料性能转移到热泵系统
摘要:用于制冷或制热的电热泵是一种新兴的零排放技术,它可以取代蒸汽压缩系统、有害制冷剂和机械压缩机,理论上具有更高的性能系数。现有的电热陶瓷可以达到卡诺极限的85%左右,现有的电热聚合物可以实现紧凑和高功率密度的系统。然而,已发表的系统演示的性能远远低于这一性能,部分原因是外部电子充电损失(电热电容器的循环充电/放电)。这项工作分析了最新的99.74%超高效率电力电子设备如何在系统级保持高性能。对材料和系统参数的第一性原理分析还表明,陶瓷(PMN, PST)和pvdf基聚合物的材料性能差异对系统参数的影响显著。系统基准提供了对材料分析未涵盖的系统特征的深入了解。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
MRS Advances
MRS Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.50
自引率
0.00%
发文量
184
期刊最新文献
Sorption behavior of cesium ions to Mg-containing calcium silicate hydrate in a co-precipitation process Pair potential description on phase stability variations in close-packed polytypism Saffron extract-mediated synthesis of Cu(OH)2 nanocomposite: Structural and photocatalytic activity investigation Detection of wells in images of deformed 96-wells plates A facile growth, optical behavior of organic nonlinear optical crystal: 4-bromo-2-methylbenzonitrile
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1