Refractive Index-Modulated LSPR Sensing in 20-120 nm Gold and Silver Nanoparticles: A Simulation Study

Zoe Bradley, David Cunningham, Nikhil Bhalla
{"title":"Refractive Index-Modulated LSPR Sensing in 20-120 nm Gold and Silver Nanoparticles: A Simulation Study","authors":"Zoe Bradley, David Cunningham, Nikhil Bhalla","doi":"10.1149/2754-2726/ad08d8","DOIUrl":null,"url":null,"abstract":"Abstract Localized surface plasmon resonance (LSPR) based sensing has been a simple and cost-effective way to measure local refractive index changes. LSPR materials exhibit fascinating properties that have significant implications for various bio/chemical sensing applications. In many of these applications, the focus has traditionally been on analyzing the intensity of the reflected or transmitted signals in terms of the refractive index of the surrounding medium. However, limited simulation work is conducted on investigating the refractive index sensitivity of LSPR materials. Within this context, here we simulate the refractive index sensing properties of spherical gold (Au) and silver (Ag) nanoparticles ranging from 20-120 nm diameter within 1.0 to 1.50 refractive index units (RIU). After analyzing the peak optical efficiency and peak wavelength, we report the sensing performance of these materials in terms of sensitivity, linearity and figure of merit (FOM). Overall, our observations have revealed greatest FOM values for the smallest sized nanoparticles, a FOM of 6.6 for 20 nm AuNPs and 11.9 for 20 nm AgNPs with refractive index of 1.","PeriodicalId":72870,"journal":{"name":"ECS sensors plus","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS sensors plus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2754-2726/ad08d8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Localized surface plasmon resonance (LSPR) based sensing has been a simple and cost-effective way to measure local refractive index changes. LSPR materials exhibit fascinating properties that have significant implications for various bio/chemical sensing applications. In many of these applications, the focus has traditionally been on analyzing the intensity of the reflected or transmitted signals in terms of the refractive index of the surrounding medium. However, limited simulation work is conducted on investigating the refractive index sensitivity of LSPR materials. Within this context, here we simulate the refractive index sensing properties of spherical gold (Au) and silver (Ag) nanoparticles ranging from 20-120 nm diameter within 1.0 to 1.50 refractive index units (RIU). After analyzing the peak optical efficiency and peak wavelength, we report the sensing performance of these materials in terms of sensitivity, linearity and figure of merit (FOM). Overall, our observations have revealed greatest FOM values for the smallest sized nanoparticles, a FOM of 6.6 for 20 nm AuNPs and 11.9 for 20 nm AgNPs with refractive index of 1.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
20-120纳米金、银纳米粒子的折射率调制LSPR传感:模拟研究
基于局部表面等离子体共振(LSPR)的传感技术是测量局部折射率变化的一种简单、经济的方法。LSPR材料表现出迷人的特性,对各种生物/化学传感应用具有重要意义。在许多此类应用中,传统的重点是根据周围介质的折射率来分析反射或传输信号的强度。然而,对LSPR材料折射率灵敏度的模拟研究却很少。在此背景下,我们模拟了直径为20-120 nm的球形金(Au)和银(Ag)纳米颗粒在1.0 - 1.50折射率单位(RIU)范围内的折射率传感特性。在分析了峰值光效率和峰值波长之后,我们报告了这些材料在灵敏度、线性度和品质因数(FOM)方面的传感性能。总的来说,我们的观察揭示了最小尺寸纳米颗粒的FOM值,20 nm AuNPs的FOM为6.6,20 nm AgNPs的FOM为11.9,折射率为1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Review—Energy and Power Requirements for Wearable Sensors 3D Printed Carbon Nanotubes Reinforced Polydimethylsiloxane Flexible Sensors for Tactile Sensing Editors’ Choice—Review—Advances in Electrochemical Sensors: Improving Food Safety, Quality, and Traceability Field Testing of a Mixed Potential IoT Sensor Platform for Methane Quantification Automated Quantification of DNA Damage Using Deep Learning and Use of Synthetic Data Generated from Basic Geometric Shapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1