Multijet Gold Nanoparticle Inks for Additive Manufacturing of Printed and Wearable Electronics

IF 5.7 Q2 CHEMISTRY, PHYSICAL ACS Materials Au Pub Date : 2023-11-02 DOI:10.1021/acsmaterialsau.3c00058
Tony Valayil Varghese*, Josh Eixenberger, Fereshteh Rajabi-Kouchi, Maryna Lazouskaya, Cadré Francis, Hailey Burgoyne, Katelyn Wada, Harish Subbaraman and David Estrada*, 
{"title":"Multijet Gold Nanoparticle Inks for Additive Manufacturing of Printed and Wearable Electronics","authors":"Tony Valayil Varghese*,&nbsp;Josh Eixenberger,&nbsp;Fereshteh Rajabi-Kouchi,&nbsp;Maryna Lazouskaya,&nbsp;Cadré Francis,&nbsp;Hailey Burgoyne,&nbsp;Katelyn Wada,&nbsp;Harish Subbaraman and David Estrada*,&nbsp;","doi":"10.1021/acsmaterialsau.3c00058","DOIUrl":null,"url":null,"abstract":"<p >Conductive and biofriendly gold nanomaterial inks are highly desirable for printed electronics, biosensors, wearable electronics, and electrochemical sensor applications. Here, we demonstrate the scalable synthesis of stable gold nanoparticle inks with low-temperature sintering using simple chemical processing steps. Multiprinter compatible aqueous gold nanomaterial inks were formulated, achieving resistivity as low as ∼10<sup>–6</sup> Ω m for 400 nm thick films sintered at 250 °C. Printed lines with a resolution of &lt;20 μm and minimal overspray were obtained using an aerosol jet printer. The resistivity of the printed patterns reached ∼9.59 ± 1.2 × 10<sup>–8</sup> Ω m after sintering at 400 °C for 45 min. Our aqueous-formulated gold nanomaterial inks are also compatible with inkjet printing, extending the design space and manufacturability of printed and flexible electronics where metal work functions and chemically inert films are important for device applications.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"4 1","pages":"65–73"},"PeriodicalIF":5.7000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.3c00058","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialsau.3c00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Conductive and biofriendly gold nanomaterial inks are highly desirable for printed electronics, biosensors, wearable electronics, and electrochemical sensor applications. Here, we demonstrate the scalable synthesis of stable gold nanoparticle inks with low-temperature sintering using simple chemical processing steps. Multiprinter compatible aqueous gold nanomaterial inks were formulated, achieving resistivity as low as ∼10–6 Ω m for 400 nm thick films sintered at 250 °C. Printed lines with a resolution of <20 μm and minimal overspray were obtained using an aerosol jet printer. The resistivity of the printed patterns reached ∼9.59 ± 1.2 × 10–8 Ω m after sintering at 400 °C for 45 min. Our aqueous-formulated gold nanomaterial inks are also compatible with inkjet printing, extending the design space and manufacturability of printed and flexible electronics where metal work functions and chemically inert films are important for device applications.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于印刷和可穿戴电子设备增材制造的多喷射金纳米粒子油墨
导电且对生物无害的金纳米材料油墨非常适合印刷电子、生物传感器、可穿戴电子设备和电化学传感器应用。在这里,我们展示了利用简单的化学处理步骤,通过低温烧结合成稳定的金纳米颗粒油墨的可扩展性。我们配制出了兼容多种打印机的水性金纳米材料油墨,在 250 °C 下烧结的 400 nm 厚的薄膜电阻率低至 ∼10-6 Ω m。使用气溶胶喷射打印机打印出的线条分辨率为 20 μm,过喷量极少。在 400 °C 下烧结 45 分钟后,印刷图案的电阻率达到了 ∼9.59 ± 1.2 × 10-8 Ω m。我们的水配制金纳米材料墨水还与喷墨打印兼容,拓展了打印和柔性电子产品的设计空间和可制造性,因为金属工作功能和化学惰性薄膜对设备应用非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Materials Au
ACS Materials Au 材料科学-
CiteScore
5.00
自引率
0.00%
发文量
0
期刊介绍: ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications
期刊最新文献
Issue Editorial Masthead Issue Publication Information Nanostructured Thin Films Enhancing the Performance of New Organic Electronic Devices: Does It Make Sense? Nanostructured Thin Films Enhancing the Performance of New Organic Electronic Devices: Does It Make Sense? Understanding Defect-Mediated Ion Migration in Semiconductors using Atomistic Simulations and Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1