{"title":"Experimental and Theoretical studies on improving efficiency of ZnO based Dye-sensitized solar cells using Single layer Anti-reflective coating","authors":"M. Ismail Fathima, J.R. Sofia, K.S. Joseph Wilson","doi":"10.1139/cjp-2023-0171","DOIUrl":null,"url":null,"abstract":"The effect of single layer Anti-reflective coating on ZnO based Dye-sensitized solar cells are theoretically predicted and verified by experimental fabrication. By the Transfer Matrix Method (TMM), the absorption of the DSSC with and without the single layer ARC is calculated and the improvement in short-circuit current density (∆Jsc%) is estimated. The optimized thickness of the ARC required to obtain maximum improvement in the short-circuit current density (∆Jsc%) is determined. By employing ARC with the calculated optimized thickness, fabrication of spin coated ZnO based DSSC is carried out. The structural and optical parameters are studied using XRD analysis and UV absorption spectra. The efficiency of the DSSC with and without the ARC is measured by intensity-modulated photocurrent and photovoltage spectroscopy (IMPS/IMVS). The theoretically predicted efficiency of the DSSC with and without ARC agrees well with the experimental values which provide insights about improving the electrical performance of the DSSC by the ARC.
","PeriodicalId":9413,"journal":{"name":"Canadian Journal of Physics","volume":"210 3","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/cjp-2023-0171","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of single layer Anti-reflective coating on ZnO based Dye-sensitized solar cells are theoretically predicted and verified by experimental fabrication. By the Transfer Matrix Method (TMM), the absorption of the DSSC with and without the single layer ARC is calculated and the improvement in short-circuit current density (∆Jsc%) is estimated. The optimized thickness of the ARC required to obtain maximum improvement in the short-circuit current density (∆Jsc%) is determined. By employing ARC with the calculated optimized thickness, fabrication of spin coated ZnO based DSSC is carried out. The structural and optical parameters are studied using XRD analysis and UV absorption spectra. The efficiency of the DSSC with and without the ARC is measured by intensity-modulated photocurrent and photovoltage spectroscopy (IMPS/IMVS). The theoretically predicted efficiency of the DSSC with and without ARC agrees well with the experimental values which provide insights about improving the electrical performance of the DSSC by the ARC.
期刊介绍:
The Canadian Journal of Physics publishes research articles, rapid communications, and review articles that report significant advances in research in physics, including atomic and molecular physics; condensed matter; elementary particles and fields; nuclear physics; gases, fluid dynamics, and plasmas; electromagnetism and optics; mathematical physics; interdisciplinary, classical, and applied physics; relativity and cosmology; physics education research; statistical mechanics and thermodynamics; quantum physics and quantum computing; gravitation and string theory; biophysics; aeronomy and space physics; and astrophysics.