Lili Nie, Huiqiang Wang, Guangsheng Feng, Jiayu Sun, Hongwu Lv, Hang Cui
{"title":"A deep reinforcement learning assisted task offloading and resource allocation approach towards self-driving object detection","authors":"Lili Nie, Huiqiang Wang, Guangsheng Feng, Jiayu Sun, Hongwu Lv, Hang Cui","doi":"10.1186/s13677-023-00503-w","DOIUrl":null,"url":null,"abstract":"Abstract With the development of communication technology and mobile edge computing (MEC), self-driving has received more and more research interests. However, most object detection tasks for self-driving vehicles are still performed at vehicle terminals, which often requires a trade-off between detection accuracy and speed. To achieve efficient object detection without sacrificing accuracy, we propose an end–edge collaboration object detection approach based on Deep Reinforcement Learning (DRL) with a task prioritization mechanism. We use a time utility function to measure the efficiency of object detection task and aim to provide an online approach to maximize the average sum of the time utilities in all slots. Since this is an NP-hard mixed-integer nonlinear programming (MINLP) problem, we propose an online approach for task offloading and resource allocation based on Deep Reinforcement learning and Piecewise Linearization (DRPL). A deep neural network (DNN) is implemented as a flexible solution for learning offloading strategies based on road traffic conditions and wireless network environment, which can significantly reduce computational complexity. In addition, to accelerate DRPL network convergence, DNN outputs are grouped by in-vehicle cameras to form offloading strategies via permutation. Numerical results show that the DRPL scheme is at least 10% more effective and superior in terms of time utility compared to several representative offloading schemes for various vehicle local computing resource scenarios.","PeriodicalId":56007,"journal":{"name":"Journal of Cloud Computing-Advances Systems and Applications","volume":"24 1","pages":"0"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cloud Computing-Advances Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13677-023-00503-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract With the development of communication technology and mobile edge computing (MEC), self-driving has received more and more research interests. However, most object detection tasks for self-driving vehicles are still performed at vehicle terminals, which often requires a trade-off between detection accuracy and speed. To achieve efficient object detection without sacrificing accuracy, we propose an end–edge collaboration object detection approach based on Deep Reinforcement Learning (DRL) with a task prioritization mechanism. We use a time utility function to measure the efficiency of object detection task and aim to provide an online approach to maximize the average sum of the time utilities in all slots. Since this is an NP-hard mixed-integer nonlinear programming (MINLP) problem, we propose an online approach for task offloading and resource allocation based on Deep Reinforcement learning and Piecewise Linearization (DRPL). A deep neural network (DNN) is implemented as a flexible solution for learning offloading strategies based on road traffic conditions and wireless network environment, which can significantly reduce computational complexity. In addition, to accelerate DRPL network convergence, DNN outputs are grouped by in-vehicle cameras to form offloading strategies via permutation. Numerical results show that the DRPL scheme is at least 10% more effective and superior in terms of time utility compared to several representative offloading schemes for various vehicle local computing resource scenarios.
期刊介绍:
The Journal of Cloud Computing: Advances, Systems and Applications (JoCCASA) will publish research articles on all aspects of Cloud Computing. Principally, articles will address topics that are core to Cloud Computing, focusing on the Cloud applications, the Cloud systems, and the advances that will lead to the Clouds of the future. Comprehensive review and survey articles that offer up new insights, and lay the foundations for further exploratory and experimental work, are also relevant.