Comment on “A New Decade in Seismoacoustics (2010–2022)” by Fransiska Dannemann Dugick, Clinton Koch, Elizabeth Berg, Stephen Arrowsmith, and Sarah Albert

IF 2.6 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Bulletin of the Seismological Society of America Pub Date : 2023-09-12 DOI:10.1785/0120230111
Adam T. Ringler, Robert E. Anthony, Brian Shiro, Toshiro Tanimoto, David C. Wilson
{"title":"Comment on “A New Decade in Seismoacoustics (2010–2022)” by Fransiska Dannemann Dugick, Clinton Koch, Elizabeth Berg, Stephen Arrowsmith, and Sarah Albert","authors":"Adam T. Ringler, Robert E. Anthony, Brian Shiro, Toshiro Tanimoto, David C. Wilson","doi":"10.1785/0120230111","DOIUrl":null,"url":null,"abstract":"ABSTRACT An increase in seismic stations also having microbarographs has led to increased interest in the field of seismoacoustics. A review of the recent advances in this field can be found in Dannemann Dugick et al. (2023). The goal of this note is to draw the attention of the readers of Dannemann Dugick et al. (2023) to several additional interactions between the solid Earth and atmosphere that have not been classically considered in the field of seismoacoustics. The 15 January 2022 Hunga Tonga–Hunga Ha‘api eruption produced acoustic gravity waves that were recorded globally. For example, the Lamb wave from this eruption produced early-arriving and long-lasting tsunami waves. This eruption also provided globally recorded coupling of atmospheric modes with solid Earth modes, providing another example of the complex interactions that can occur at the boundary between the atmosphere and the solid Earth. Even in the absence of large atmospheric signals, collocated pressure sensors at seismic stations can be a useful tool for estimating the local substructure, such at VS30, the average shear velocity of the upper 30 m. Finally, at low frequencies, it is possible to use pressure records to correct out atmospheric disturbances recorded on seismometers. We briefly review the aforementioned, nontraditional seismoacoustic topics that we feel are important to consider as part of the full suite of interactions occurring between the solid Earth and atmosphere.","PeriodicalId":9444,"journal":{"name":"Bulletin of the Seismological Society of America","volume":"28 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Seismological Society of America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0120230111","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT An increase in seismic stations also having microbarographs has led to increased interest in the field of seismoacoustics. A review of the recent advances in this field can be found in Dannemann Dugick et al. (2023). The goal of this note is to draw the attention of the readers of Dannemann Dugick et al. (2023) to several additional interactions between the solid Earth and atmosphere that have not been classically considered in the field of seismoacoustics. The 15 January 2022 Hunga Tonga–Hunga Ha‘api eruption produced acoustic gravity waves that were recorded globally. For example, the Lamb wave from this eruption produced early-arriving and long-lasting tsunami waves. This eruption also provided globally recorded coupling of atmospheric modes with solid Earth modes, providing another example of the complex interactions that can occur at the boundary between the atmosphere and the solid Earth. Even in the absence of large atmospheric signals, collocated pressure sensors at seismic stations can be a useful tool for estimating the local substructure, such at VS30, the average shear velocity of the upper 30 m. Finally, at low frequencies, it is possible to use pressure records to correct out atmospheric disturbances recorded on seismometers. We briefly review the aforementioned, nontraditional seismoacoustic topics that we feel are important to consider as part of the full suite of interactions occurring between the solid Earth and atmosphere.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评论《地震声学新十年(2010-2022)》,作者:franciska Dannemann Dugick、Clinton Koch、Elizabeth Berg、Stephen Arrowsmith和Sarah Albert
越来越多的地震台站也配备了微型气压计,这增加了人们对地震声学领域的兴趣。对该领域最新进展的回顾可以在Dannemann Dugick等人(2023)中找到。本说明的目的是提请Dannemann Dugick等人(2023)的读者注意固体地球和大气之间的几个额外的相互作用,这些相互作用在地震声学领域中没有被经典地考虑过。2022年1月15日,Hunga Tonga-Hunga Ha 'api火山爆发产生了声波重力波,全球都有记录。例如,这次喷发产生的兰姆波产生了早到达且持续时间长的海啸波。这次喷发还提供了全球记录的大气模式与固体地球模式的耦合,为大气和固体地球之间的边界可能发生的复杂相互作用提供了另一个例子。即使在没有大的大气信号的情况下,地震台站配置的压力传感器也可以成为估计当地子结构的有用工具,例如在VS30,上层30米的平均剪切速度。最后,在低频率下,可以使用压力记录来校正地震仪上记录的大气扰动。我们简要回顾了上述非传统的地震声学主题,我们认为这些主题作为固体地球和大气之间发生的全套相互作用的一部分是重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bulletin of the Seismological Society of America
Bulletin of the Seismological Society of America 地学-地球化学与地球物理
CiteScore
5.80
自引率
13.30%
发文量
140
审稿时长
3 months
期刊介绍: The Bulletin of the Seismological Society of America, commonly referred to as BSSA, (ISSN 0037-1106) is the premier journal of advanced research in earthquake seismology and related disciplines. It first appeared in 1911 and became a bimonthly in 1963. Each issue is composed of scientific papers on the various aspects of seismology, including investigation of specific earthquakes, theoretical and observational studies of seismic waves, inverse methods for determining the structure of the Earth or the dynamics of the earthquake source, seismometry, earthquake hazard and risk estimation, seismotectonics, and earthquake engineering. Special issues focus on important earthquakes or rapidly changing topics in seismology. BSSA is published by the Seismological Society of America.
期刊最新文献
Broadband Ground‐Motion Synthesis via Generative Adversarial Neural Operators: Development and Validation Site‐Specific Ground‐Motion Waveform Generation Using a Conditional Generative Adversarial Network and Generalized Inversion Technique Ground‐Motion Model for Small‐to‐Moderate Potentially Induced Earthquakes Using an Ensemble Machine Learning Approach for CENA Stochastic Simulation of Pulse‐Like Ground Motions Using Wavelet Packets Imaging Upper‐Mantle Anisotropy with Transdimensional Bayesian Monte Carlo Sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1