A New Statistical Perspective on Båth’s Law

IF 2.6 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Seismological Research Letters Pub Date : 2023-10-18 DOI:10.1785/0220230147
Christian Grimm, Sebastian Hainzl, Martin Käser, Helmut Küchenhoff
{"title":"A New Statistical Perspective on Båth’s Law","authors":"Christian Grimm, Sebastian Hainzl, Martin Käser, Helmut Küchenhoff","doi":"10.1785/0220230147","DOIUrl":null,"url":null,"abstract":"Abstract The empirical Båth’s law states that the average magnitude difference (ΔM) between a mainshock and its strongest aftershock is ∼1.2, independent of the size of the mainshock. Although this observation can generally be explained by a scaling of aftershock productivity with mainshock magnitude in combination with a Gutenberg–Richter frequency–magnitude distribution, estimates of ΔM may be preferable because they are directly related to the most interesting information, namely the magnitudes of the main events, without relying on assumptions. However, a major challenge in calculating this value is the bias introduced by missing data points when the strongest aftershock is below the observed cut-off magnitude. Ignoring missing values leads to a systematic error because the data points removed are those with particularly large magnitude differences ΔM. The error can be minimized by restricting the statistics to mainshocks that are at least 2 magnitude units above the cutoff, but then the sample size is strongly reduced. This work provides an innovative approach for modeling ΔM by adapting methods for time-to-event data, which often suffer from incomplete observations (censoring). In doing so, we adequately account for unobserved values and estimate a fully parametric distribution of the magnitude differences ΔM for mainshocks in a global earthquake catalog. Our results suggest that magnitude differences are best modeled by the Gompertz distribution and that larger ΔM are expected at increasing depths and higher heat flows.","PeriodicalId":21687,"journal":{"name":"Seismological Research Letters","volume":"1 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0220230147","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The empirical Båth’s law states that the average magnitude difference (ΔM) between a mainshock and its strongest aftershock is ∼1.2, independent of the size of the mainshock. Although this observation can generally be explained by a scaling of aftershock productivity with mainshock magnitude in combination with a Gutenberg–Richter frequency–magnitude distribution, estimates of ΔM may be preferable because they are directly related to the most interesting information, namely the magnitudes of the main events, without relying on assumptions. However, a major challenge in calculating this value is the bias introduced by missing data points when the strongest aftershock is below the observed cut-off magnitude. Ignoring missing values leads to a systematic error because the data points removed are those with particularly large magnitude differences ΔM. The error can be minimized by restricting the statistics to mainshocks that are at least 2 magnitude units above the cutoff, but then the sample size is strongly reduced. This work provides an innovative approach for modeling ΔM by adapting methods for time-to-event data, which often suffer from incomplete observations (censoring). In doing so, we adequately account for unobserved values and estimate a fully parametric distribution of the magnitude differences ΔM for mainshocks in a global earthquake catalog. Our results suggest that magnitude differences are best modeled by the Gompertz distribution and that larger ΔM are expected at increasing depths and higher heat flows.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
巴巴斯定律的统计新视角
经验巴斯定律指出,主震与其最强余震之间的平均震级差(ΔM)为~ 1.2,与主震的大小无关。虽然这一观察结果通常可以用余震强度与主震震级结合古登堡-里希特频率-震级分布的比例来解释,但ΔM的估计可能更可取,因为它们与最有趣的信息直接相关,即主要事件的震级,而不依赖于假设。然而,计算该值的一个主要挑战是,当最强余震低于观测到的截止震级时,由于缺少数据点而引起的偏差。忽略缺失值会导致系统错误,因为被删除的数据点是那些具有特别大的幅度差异ΔM。误差可以通过将统计数据限制在截止点以上至少2个震级单位的主震来最小化,但这样就大大减少了样本量。这项工作提供了一种创新的方法,通过适应时间到事件数据的方法来建模ΔM,这些数据经常受到不完整观察(审查)的影响。在这样做的过程中,我们充分考虑了未观测到的值,并估计了全球地震目录中主震震级差异ΔM的完全参数分布。我们的结果表明,震级差异最好用Gompertz分布来模拟,并且随着深度的增加和热流的增加,预计会有更大的ΔM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Seismological Research Letters
Seismological Research Letters 地学-地球化学与地球物理
CiteScore
6.60
自引率
12.10%
发文量
239
审稿时长
3 months
期刊介绍: Information not localized
期刊最新文献
Follow the Trace: Becoming a Seismo‐Detective with a Campus‐Based Raspberry Shake Seismometer Nominations for the Next Joyner Lecturer Due 30 June Imaging Urban Hidden Faults with Ambient Noise Recorded by Dense Seismic Arrays Microseismic Event Location with Dual Vertical DAS Arrays: Insights from the FORGE 2022 Stimulation New Empirical Source‐Scaling Laws for Crustal Earthquakes Incorporating Fault Dip and Seismogenic‐Thickness Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1