ПОБУДОВА ПРАВИЛ ПРИЙНЯТТЯ РІШЕНЬ ДЛЯ РОЗПІЗНАВАННЯ ОБЛИЧ НА ОСНОВІ КВАДРАТА ВІДСТАНІ МАХАЛАНОБІСА ДЛЯ НОРМАЛІЗОВАНИХ ДАНИХ

Сергій ПРИХОДЬКО, Артем ТРУХОВ
{"title":"ПОБУДОВА ПРАВИЛ ПРИЙНЯТТЯ РІШЕНЬ ДЛЯ РОЗПІЗНАВАННЯ ОБЛИЧ НА ОСНОВІ КВАДРАТА ВІДСТАНІ МАХАЛАНОБІСА ДЛЯ НОРМАЛІЗОВАНИХ ДАНИХ","authors":"Сергій ПРИХОДЬКО, Артем ТРУХОВ","doi":"10.32782/it/2023-2-6","DOIUrl":null,"url":null,"abstract":"Розпізнавання облич є одним із завдань розпізнавання образів, яке стає все більш популярним через широке застосування в комп’ютерному зорі, системах безпеки та ін. Низька ймовірність ідентифікації особи за обличчям може мати негативні наслідки. Тому існує потреба в розробці та вдосконаленні методів розпізнавання облич. Один із широко використовуваних методів розпізнавання образів базується на застосуванні вирішальних правил на основі квадрата відстані Махаланобіса. Квадрат відстані Махаланобіса використовується для побудови еліпсоїда прогнозування. Але суттєвим обмеженням його використання є необхідність виконання припущення про нормальність розподілу багатовимірних даних, порушення якого як правило призводить до зменшення ймовірності розпізнавання. Метою роботи є підвищення ймовірності розпізнавання облич за рахунок побудови правил прийняття рішень на основі квадрата відстані Махаланобіса для десятивимірних нормалізованих даних характеристик обличчя. Для отримання вектору характеристик обличчя з використанням бібліотеки Dlib було розроблено програму мовою Python. Для оцінювання відхилення від нормального розподілу даних було використано тест Mardia. Досліджено, що отримані вибірки характеристик обличчя мають розподіл, який відхиляється від нормального, тому була виконана нормалізація за допомогою відомого одновимірного перетворення у вигляді десяткового логарифму. На основі квадрата відстані Махаланобіса побудовані правила прийняття рішень у вигляді десятивимірних еліпсоїдів прогнозування для початкових та нормалізованих даних. Вирішальні правила, побудовані для нормалізованих даних, показали більшу ймовірність розпізнавання облич. Результати доводять, що нормалізація збільшує ймовірність розпізнавання облич у разі суттєвого відхилення багатовимірного розподілу характеристик обличчя від нормального. Також було з’ясовано, що у разі існування високої кореляція між характеристиками обличчя, застосування одновимірних нормалізуючих перетворень не завжди призводить до добрих результатів розпізнавання. У цьому разі потрібно використовувати багатовимірні нормалізуючі перетворення, такі як Бокса-Кокса або Джонсона.","PeriodicalId":486523,"journal":{"name":"Information Technology Computer Science Software Engineering and Cyber Security","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology Computer Science Software Engineering and Cyber Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32782/it/2023-2-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Розпізнавання облич є одним із завдань розпізнавання образів, яке стає все більш популярним через широке застосування в комп’ютерному зорі, системах безпеки та ін. Низька ймовірність ідентифікації особи за обличчям може мати негативні наслідки. Тому існує потреба в розробці та вдосконаленні методів розпізнавання облич. Один із широко використовуваних методів розпізнавання образів базується на застосуванні вирішальних правил на основі квадрата відстані Махаланобіса. Квадрат відстані Махаланобіса використовується для побудови еліпсоїда прогнозування. Але суттєвим обмеженням його використання є необхідність виконання припущення про нормальність розподілу багатовимірних даних, порушення якого як правило призводить до зменшення ймовірності розпізнавання. Метою роботи є підвищення ймовірності розпізнавання облич за рахунок побудови правил прийняття рішень на основі квадрата відстані Махаланобіса для десятивимірних нормалізованих даних характеристик обличчя. Для отримання вектору характеристик обличчя з використанням бібліотеки Dlib було розроблено програму мовою Python. Для оцінювання відхилення від нормального розподілу даних було використано тест Mardia. Досліджено, що отримані вибірки характеристик обличчя мають розподіл, який відхиляється від нормального, тому була виконана нормалізація за допомогою відомого одновимірного перетворення у вигляді десяткового логарифму. На основі квадрата відстані Махаланобіса побудовані правила прийняття рішень у вигляді десятивимірних еліпсоїдів прогнозування для початкових та нормалізованих даних. Вирішальні правила, побудовані для нормалізованих даних, показали більшу ймовірність розпізнавання облич. Результати доводять, що нормалізація збільшує ймовірність розпізнавання облич у разі суттєвого відхилення багатовимірного розподілу характеристик обличчя від нормального. Також було з’ясовано, що у разі існування високої кореляція між характеристиками обличчя, застосування одновимірних нормалізуючих перетворень не завжди призводить до добрих результатів розпізнавання. У цьому разі потрібно використовувати багатовимірні нормалізуючі перетворення, такі як Бокса-Кокса або Джонсона.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于归一化数据的马哈拉诺比斯距离平方建立人脸识别决策规则
人脸识别是模式识别任务之一,由于其在计算机视觉、安全系统等方面的广泛应用而日益流行。通过人脸识别一个人的概率很低,可能会产生负面影响。因此,有必要开发和改进人脸识别方法。广泛使用的模式识别方法之一是基于 Mahalanobis 距离平方的决策规则的应用。Mahalanobis 距离平方用于建立一个预测椭球体。然而,其使用的一个重要局限是需要满足多元数据分布正态性的假设,这通常会导致识别概率的下降。本文的目的是通过为十维归一化人脸特征数据建立基于马哈拉诺比距离平方的决策规则来提高人脸识别概率。为了获得人脸特征的向量,我们使用 Dlib 库开发了一个 Python 程序。Mardia 检验用于评估数据偏离正态分布的程度。结果发现,获得的面部特征样本的分布偏离了正态分布,因此使用众所周知的十进制对数形式的一维变换进行了归一化处理。根据 Mahalanobis 距离的平方,以十维预测椭圆的形式为原始数据和归一化数据建立了决策规则。为归一化数据建立的决策规则显示出更高的人脸识别概率。结果证明,当人脸特征的多元分布严重偏离正态分布时,归一化会提高人脸识别概率。研究还发现,如果人脸特征之间存在高度相关性,使用单变量归一化变换并不总能带来良好的识别结果。在这种情况下,应使用多维归一化变换,如 Box-Cox 或 Johnson。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ЗАДАЧА ПОШУКУ НАЙКОРОТШОГО ШЛЯХУ: ПОРІВНЯЛЬНИЙ АНАЛІЗ ОСНОВНИХ АЛГОРИТМІВ РЕЗУЛЬТАТИ ДОСЛІДЖЕННЯ ТА ВПРОВАДЖЕННЯ В НАВЧАЛЬНИЙ ПРОЦЕС МОДЕЛІ-СИМУЛЯТОРА АВТОМАТИЗОВАНОЇ ФАБРИКИ SOCIAL ENGINEERING IN MODERN MESSENGERS: APPLICATIONS FOR OFFENSIVE SECURITY ІНТЕРФЕЙС ТЕХНІЧНОГО СУПРОВОДЖЕННЯ СКЛАДНИХ ІНФОРМАЦІЙНО-КЕРУЮЧИХ СИСТЕМ АВТОМАТИЗАЦІЇ МЕТОД ФОРМУВАННЯ ПАРАМЕТРІВ ФУНКЦІОНАЛЬНИХ ОБОВ’ЯЗКІВ ДЛЯ ОЦІНКИ ЗАГРОЗ В СОЦІОТЕХНІЧНИХ СИСТЕМАХ
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1