Non-isothermal pyrolysis of Polyalthia longifolia using thermogravimetric analyzer: Kinetics and thermodynamics

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS Journal of Renewable and Sustainable Energy Pub Date : 2023-09-01 DOI:10.1063/5.0160104
Praveen Kumar Reddy Annapureddy, Nanda Kishore
{"title":"Non-isothermal pyrolysis of <i>Polyalthia longifolia</i> using thermogravimetric analyzer: Kinetics and thermodynamics","authors":"Praveen Kumar Reddy Annapureddy, Nanda Kishore","doi":"10.1063/5.0160104","DOIUrl":null,"url":null,"abstract":"Non-isothermal thermogravimetric experiments were carried out at four different heating rates to investigate thermal decomposition of Polyalthia longifolia leaves, with primary goals of determining kinetic triplets (activation energy, frequency factor, and reaction mechanism) and thermodynamic parameters. Kinetics investigation was conducted by utilizing five iso-conversional approaches, viz., Starink (STK), Ozawa-Flynn-Wall (OFW), Kissinger-Akahira-Sunose (KAS), differential Friedman method (DFM), and distributed activation energy model (DAEM). Results indicated that average activation energy (Eα) ranged between 211.57 and 231 kJ/mol. Average values of activation energy obtained by KAS (211.57 kJ/mol) were found to be in the neighborhood of that obtained by other three integral methods, i.e., OFW (210.80 kJ/mol), STK (211.80 kJ/mol), and DAEM (211.57 kJ/mol). Criado's master plots approach revealed that experimental data matches with none of the reaction model until conversion of 0.4 and thereafter follows D3 for conversion of 0.5–0.7, whereas master plots based on the integral form of data disclosed that this method is not appropriate for pyrolysis of the present biomass sample. Finally, pyrolysis of P. longifolia biomass to produce bioenergy is found to be feasible (Eα − ΔH = ∼5–6 kJ/mol).","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":"62 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0160104","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

Non-isothermal thermogravimetric experiments were carried out at four different heating rates to investigate thermal decomposition of Polyalthia longifolia leaves, with primary goals of determining kinetic triplets (activation energy, frequency factor, and reaction mechanism) and thermodynamic parameters. Kinetics investigation was conducted by utilizing five iso-conversional approaches, viz., Starink (STK), Ozawa-Flynn-Wall (OFW), Kissinger-Akahira-Sunose (KAS), differential Friedman method (DFM), and distributed activation energy model (DAEM). Results indicated that average activation energy (Eα) ranged between 211.57 and 231 kJ/mol. Average values of activation energy obtained by KAS (211.57 kJ/mol) were found to be in the neighborhood of that obtained by other three integral methods, i.e., OFW (210.80 kJ/mol), STK (211.80 kJ/mol), and DAEM (211.57 kJ/mol). Criado's master plots approach revealed that experimental data matches with none of the reaction model until conversion of 0.4 and thereafter follows D3 for conversion of 0.5–0.7, whereas master plots based on the integral form of data disclosed that this method is not appropriate for pyrolysis of the present biomass sample. Finally, pyrolysis of P. longifolia biomass to produce bioenergy is found to be feasible (Eα − ΔH = ∼5–6 kJ/mol).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热重分析仪非等温热解长叶莲:动力学和热力学
采用非等温热重法,在4种不同升温速率下研究了长叶杜鹃叶片的热分解过程,确定了活化能、频率因子和反应机理等动力学参数。动力学研究采用Starink (STK)、Ozawa-Flynn-Wall (OFW)、Kissinger-Akahira-Sunose (KAS)、微分弗里德曼方法(DFM)和分布式活化能模型(DAEM)五种等转换方法进行。结果表明,其平均活化能(Eα)在211.57 ~ 231 kJ/mol之间。KAS法得到的活化能平均值为211.57 kJ/mol,与OFW法(210.80 kJ/mol)、STK法(211.80 kJ/mol)、DAEM法(211.57 kJ/mol)的平均值接近。Criado的主图方法表明,在转化率为0.4之前,实验数据与任何一个反应模型都不匹配,此后在转化率为0.5-0.7时遵循D3,而基于数据积分形式的主图表明,该方法不适用于当前生物质样品的热解。最后,发现长叶杨生物质热解生产生物能源是可行的(Eα−ΔH = ~ 5-6 kJ/mol)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Renewable and Sustainable Energy
Journal of Renewable and Sustainable Energy ENERGY & FUELS-ENERGY & FUELS
CiteScore
4.30
自引率
12.00%
发文量
122
审稿时长
4.2 months
期刊介绍: The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields. Topics covered include: Renewable energy economics and policy Renewable energy resource assessment Solar energy: photovoltaics, solar thermal energy, solar energy for fuels Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics Bioenergy: biofuels, biomass conversion, artificial photosynthesis Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation Power distribution & systems modeling: power electronics and controls, smart grid Energy efficient buildings: smart windows, PV, wind, power management Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies Energy storage: batteries, supercapacitors, hydrogen storage, other fuels Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other Marine and hydroelectric energy: dams, tides, waves, other Transportation: alternative vehicle technologies, plug-in technologies, other Geothermal energy
期刊最新文献
High areal-capacitance based extremely stable flexible supercapacitors using binder-free exfoliated graphite paper electrode Case study of a bore wind-ramp event from lidar measurements and HRRR simulations over ARM Southern Great Plains Barriers and variable spacing enhance convective cooling and increase power output in solar PV plants Two three-dimensional super-Gaussian wake models for hilly terrain Evaluation of wind resource uncertainty on energy production estimates for offshore wind farms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1