{"title":"Radar sensing via OTFS signaling","authors":"Kecheng Zhang, Zhongjie Li, Weijie Yuan, Yunlong Cai, Feifei Gao","doi":"10.23919/jcc.fa.2023-0060.202309","DOIUrl":null,"url":null,"abstract":"By multiplexing information symbols in the delay-Doppler (DD) domain, orthogonal time frequency space (OTFS) is a promising candidate for future wireless communication in high-mobility scenarios. In addition to the superior communication performance, OTFS is also a natural choice for radar sensing since the primary parameters (range and velocity of targets) in radar signal processing can be inferred directly from the delay and Doppler shifts. Though there are several works on OTFS radar sensing, most of them consider the integer parameter estimation only, while the delay and Doppler shifts are usually fractional in the real world. In this paper, we propose a two-step method to estimate the fractional delay and Doppler shifts. We first perform the two-dimensional (2D) correlation between the received and transmitted DD domain symbols to obtain the integer parts of the parameters. Then a difference-based method is implemented to estimate the fractional parts of delay and Doppler indices. Meanwhile, we implement a target detection method based on a generalized likelihood ratio test since the number of potential targets in the sensing scenario is usually unknown. The simulation results show that the proposed method can obtain the delay and Doppler shifts accurately and get the number of sensing targets with a high detection probability.","PeriodicalId":9814,"journal":{"name":"China Communications","volume":"17 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/jcc.fa.2023-0060.202309","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
By multiplexing information symbols in the delay-Doppler (DD) domain, orthogonal time frequency space (OTFS) is a promising candidate for future wireless communication in high-mobility scenarios. In addition to the superior communication performance, OTFS is also a natural choice for radar sensing since the primary parameters (range and velocity of targets) in radar signal processing can be inferred directly from the delay and Doppler shifts. Though there are several works on OTFS radar sensing, most of them consider the integer parameter estimation only, while the delay and Doppler shifts are usually fractional in the real world. In this paper, we propose a two-step method to estimate the fractional delay and Doppler shifts. We first perform the two-dimensional (2D) correlation between the received and transmitted DD domain symbols to obtain the integer parts of the parameters. Then a difference-based method is implemented to estimate the fractional parts of delay and Doppler indices. Meanwhile, we implement a target detection method based on a generalized likelihood ratio test since the number of potential targets in the sensing scenario is usually unknown. The simulation results show that the proposed method can obtain the delay and Doppler shifts accurately and get the number of sensing targets with a high detection probability.
期刊介绍:
China Communications (ISSN 1673-5447) is an English-language monthly journal cosponsored by the China Institute of Communications (CIC) and IEEE Communications Society (IEEE ComSoc). It is aimed at readers in industry, universities, research and development organizations, and government agencies in the field of Information and Communications Technologies (ICTs) worldwide.
The journal's main objective is to promote academic exchange in the ICTs sector and publish high-quality papers to contribute to the global ICTs industry. It provides instant access to the latest articles and papers, presenting leading-edge research achievements, tutorial overviews, and descriptions of significant practical applications of technology.
China Communications has been indexed in SCIE (Science Citation Index-Expanded) since January 2007. Additionally, all articles have been available in the IEEE Xplore digital library since January 2013.