{"title":"Graphene induced carbon-based fibre composite as microwave absorber for X-band frequency application","authors":"Akshita Yadav, Priyanka P. Singh, Ganeswar Nath","doi":"10.1080/08327823.2023.2269494","DOIUrl":null,"url":null,"abstract":"AbstractStealth performance for any microwave absorbing material (MAM) is primarily controlled by the intrinsic characteristic properties of the composition of the composite. The inbuilt property of graphene has enrich the interaction of electromagnetic waves (EMWs) when it is impregnated in its compatible components such as naturally occurring organic materials. The present research engraved with a natural fibre composite with graphene as a stuffing in a resin polymer environment. The powdered form of banana-coconut coir fibre dust with 50–50 wt.% of average particle size of 150 µm with graphene has been fabricated as a hybrid composite of Graphene/Banana-coconut (GN/BNN-CCNT). The surface morphology of the fabricated composite is significantly modified with the addition of graphene creating a sustainable and foam-like elastic skeletal structure for compatibility with EMW. The enhanced dielectric values with different microwave properties for stealth performance are computed. At a frequency of 10.63 GHz a significant −15.68 dB reflection loss is found which comprises of power loss of 97.5% showing the effectiveness of the GN/BNN-CCNT/Epoxy hybrid composite as a stealth material for different X band frequency applications.Keywords: Microwave absorbing materialshybrid compositedielectric propertiesX-band frequency AcknowledgmentThe authors would like to express their appreciation to Science and Technology Department, Govt. of Odisha for sanctioning the Project No.3692/ST and Vice-Chancellor of the Veer Surendra Sai University of Technology, Burla for providing laboratory facilities.Disclosure statementThe author declares no conflict of interest.","PeriodicalId":16556,"journal":{"name":"Journal of Microwave Power and Electromagnetic Energy","volume":"25 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwave Power and Electromagnetic Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/08327823.2023.2269494","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractStealth performance for any microwave absorbing material (MAM) is primarily controlled by the intrinsic characteristic properties of the composition of the composite. The inbuilt property of graphene has enrich the interaction of electromagnetic waves (EMWs) when it is impregnated in its compatible components such as naturally occurring organic materials. The present research engraved with a natural fibre composite with graphene as a stuffing in a resin polymer environment. The powdered form of banana-coconut coir fibre dust with 50–50 wt.% of average particle size of 150 µm with graphene has been fabricated as a hybrid composite of Graphene/Banana-coconut (GN/BNN-CCNT). The surface morphology of the fabricated composite is significantly modified with the addition of graphene creating a sustainable and foam-like elastic skeletal structure for compatibility with EMW. The enhanced dielectric values with different microwave properties for stealth performance are computed. At a frequency of 10.63 GHz a significant −15.68 dB reflection loss is found which comprises of power loss of 97.5% showing the effectiveness of the GN/BNN-CCNT/Epoxy hybrid composite as a stealth material for different X band frequency applications.Keywords: Microwave absorbing materialshybrid compositedielectric propertiesX-band frequency AcknowledgmentThe authors would like to express their appreciation to Science and Technology Department, Govt. of Odisha for sanctioning the Project No.3692/ST and Vice-Chancellor of the Veer Surendra Sai University of Technology, Burla for providing laboratory facilities.Disclosure statementThe author declares no conflict of interest.
期刊介绍:
The Journal of the Microwave Power Energy (JMPEE) is a quarterly publication of the International Microwave Power Institute (IMPI), aimed to be one of the primary sources of the most reliable information in the arts and sciences of microwave and RF technology. JMPEE provides space to engineers and researchers for presenting papers about non-communication applications of microwave and RF, mostly industrial, scientific, medical and instrumentation. Topics include, but are not limited to: applications in materials science and nanotechnology, characterization of biological tissues, food industry applications, green chemistry, health and therapeutic applications, microwave chemistry, microwave processing of materials, soil remediation, and waste processing.