Regional diversification and labour market upgrading: local access to skill-related high-income jobs helps workers escaping low-wage employment

IF 5.6 2区 经济学 Q1 DEVELOPMENT STUDIES Cambridge Journal of Regions Economy and Society Pub Date : 2023-08-07 DOI:10.1093/cjres/rsad016
Zoltán Elekes, Anna Baranowska-Rataj, Rikard Eriksson
{"title":"Regional diversification and labour market upgrading: local access to skill-related high-income jobs helps workers escaping low-wage employment","authors":"Zoltán Elekes, Anna Baranowska-Rataj, Rikard Eriksson","doi":"10.1093/cjres/rsad016","DOIUrl":null,"url":null,"abstract":"Abstract This article investigates how the evolution of local labour market structure enables or constrains workers as regards escaping low-wage jobs. Drawing on the network-based approach of evolutionary economic geography, we employ a detailed individual-level panel dataset to construct skill-relatedness networks for 72 functional labour market regions in Sweden. Subsequent fixed-effect panel regressions indicate that increasing density of skill-related high-income jobs within a region is conducive to low-wage workers moving to better-paid jobs, hence facilitating labour market upgrading through diversification. While metropolitan regions offer a premium for this relationship, it also holds for smaller regions, and across various worker characteristics.","PeriodicalId":47897,"journal":{"name":"Cambridge Journal of Regions Economy and Society","volume":"8 1","pages":"0"},"PeriodicalIF":5.6000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Regions Economy and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/cjres/rsad016","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENT STUDIES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This article investigates how the evolution of local labour market structure enables or constrains workers as regards escaping low-wage jobs. Drawing on the network-based approach of evolutionary economic geography, we employ a detailed individual-level panel dataset to construct skill-relatedness networks for 72 functional labour market regions in Sweden. Subsequent fixed-effect panel regressions indicate that increasing density of skill-related high-income jobs within a region is conducive to low-wage workers moving to better-paid jobs, hence facilitating labour market upgrading through diversification. While metropolitan regions offer a premium for this relationship, it also holds for smaller regions, and across various worker characteristics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
区域多样化和劳动力市场升级:在当地获得与技能相关的高收入工作有助于工人摆脱低工资就业
摘要本文研究了本地劳动力市场结构的演变是如何促使或限制工人逃离低薪工作的。利用进化经济地理学的基于网络的方法,我们采用了详细的个人层面面板数据集来构建瑞典72个功能性劳动力市场区域的技能相关性网络。随后的固定效应面板回归表明,一个地区内与技能相关的高收入工作密度的增加有利于低工资工人向收入更高的工作转移,从而通过多样化促进劳动力市场升级。虽然大都市地区为这种关系提供了溢价,但它也适用于较小的地区,以及各种各样的工人特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
4.50%
发文量
40
期刊最新文献
The polarisation of Italian metropolitan areas, 2000–2018: structural change, technology and growth Rural areas as winners of COVID-19, digitalization and remote working? Empirical evidence from recent internal migration in Germany Firm interconnectedness and resilience: evidence from the Italian manufacturing Construction minerals as part of an urban circular economy? A multi-scalar study of the city of Oslo and its hinterland Localised waste reduction networks, global destruction networks and the circular economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1