Modelling the laser surface hardening in a ferrite and pearlite initial microstructure

IF 1.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Technology Pub Date : 2023-08-07 DOI:10.1080/02670836.2023.2240101
Felipe M. Castro Cerda, Constantinos Goulas, Dakota Jones, Ata Kamyabi, Douglas Hamre, Patricio Méndez, Gentry Wood
{"title":"Modelling the laser surface hardening in a ferrite and pearlite initial microstructure","authors":"Felipe M. Castro Cerda, Constantinos Goulas, Dakota Jones, Ata Kamyabi, Douglas Hamre, Patricio Méndez, Gentry Wood","doi":"10.1080/02670836.2023.2240101","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe present study explores the microstructure and the depth-dependence of hardness after a single pass laser heat-treatment. The initial microstructure was selected as ferrite and pearlite in different fractions, with the aim of studying low, medium, and high carbon steels. A modification of an existing model is proposed, whereby the cementite dissolution is incorporated to better reflect the microstructure evolution during the rapid thermal cycle. It is found that the predictions under the new paradigm show fair agreement with the experimental data. The new model indicates that the correct estimation of the composition of austenite near the transition zone produces a more accurate prediction of the hardness profile, reducing the overestimation obtained in previous works.KEYWORDS: Laser heat treatmentFast heatingAusteniteMartensiteModelling Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"21 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02670836.2023.2240101","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACTThe present study explores the microstructure and the depth-dependence of hardness after a single pass laser heat-treatment. The initial microstructure was selected as ferrite and pearlite in different fractions, with the aim of studying low, medium, and high carbon steels. A modification of an existing model is proposed, whereby the cementite dissolution is incorporated to better reflect the microstructure evolution during the rapid thermal cycle. It is found that the predictions under the new paradigm show fair agreement with the experimental data. The new model indicates that the correct estimation of the composition of austenite near the transition zone produces a more accurate prediction of the hardness profile, reducing the overestimation obtained in previous works.KEYWORDS: Laser heat treatmentFast heatingAusteniteMartensiteModelling Disclosure statementNo potential conflict of interest was reported by the author(s).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟铁素体和珠光体初始组织的激光表面硬化
摘要本文研究了激光单道次热处理后的显微组织和硬度的深度依赖性。选取了不同馏分的铁素体和珠光体作为初始组织,对低、中、高碳钢进行了研究。为了更好地反映快速热循环过程中微观结构的演变,对已有模型进行了修正。结果表明,新范式下的预测结果与实验数据吻合较好。新模型表明,正确估计过渡区附近奥氏体成分可以更准确地预测硬度分布,减少了以往工作中过高估计的问题。关键词:激光热处理;快速加热;奥氏体;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science and Technology
Materials Science and Technology 工程技术-材料科学:综合
CiteScore
2.70
自引率
5.60%
发文量
0
审稿时长
3 months
期刊介绍: 《Materials Science and Technology》(MST) is an international forum for the publication of refereed contributions covering fundamental and technological aspects of materials science and engineering.
期刊最新文献
Statement of Retraction: Creep and mechanical properties of aluminium A356 composites reinforced with coated and un-coated MWCNTs fabricated using the stir casting method Low-cycle fatigue mashing behaviours of HTRB630 high-strength steel exposed to high temperatures Polymer nanocomposite films of Sr-doped BiVO4 for photodegradation of malachite green Constructing superior rate-performance manganese-based anode for lithium-ion batteries by tuning interface effect Evolution mechanism of the low-carbon MgO-based alkali-activated system under different heat-treatment conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1