Kernel interpolation generalizes poorly

IF 2.4 2区 数学 Q2 BIOLOGY Biometrika Pub Date : 2023-08-07 DOI:10.1093/biomet/asad048
Yicheng Li, Haobo Zhang, Qian Lin
{"title":"Kernel interpolation generalizes poorly","authors":"Yicheng Li, Haobo Zhang, Qian Lin","doi":"10.1093/biomet/asad048","DOIUrl":null,"url":null,"abstract":"Summary One of the most interesting problems in the recent renaissance of the studies in kernel regression might be whether kernel interpolation can generalize well, since it may help us understand the ‘benign overfitting phenomenon’ reported in the literature on deep networks. In this paper, under mild conditions, we show that, for any ε>0, the generalization error of kernel interpolation is lower bounded by Ω(n−ε). In other words, the kernel interpolation generalizes poorly for a large class of kernels. As a direct corollary, we can show that overfitted wide neural networks defined on the sphere generalize poorly.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":"98 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomet/asad048","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

Summary One of the most interesting problems in the recent renaissance of the studies in kernel regression might be whether kernel interpolation can generalize well, since it may help us understand the ‘benign overfitting phenomenon’ reported in the literature on deep networks. In this paper, under mild conditions, we show that, for any ε>0, the generalization error of kernel interpolation is lower bounded by Ω(n−ε). In other words, the kernel interpolation generalizes poorly for a large class of kernels. As a direct corollary, we can show that overfitted wide neural networks defined on the sphere generalize poorly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核插值的泛化性很差
最近核回归研究复兴中最有趣的问题之一可能是核插值是否可以很好地泛化,因为它可以帮助我们理解深度网络文献中报道的“良性过拟合现象”。在温和条件下,我们证明了对于任意ε>0,核插值的泛化误差下界为Ω(n−ε)。换句话说,对于大量的核,核插值的泛化效果很差。作为一个直接推论,我们可以证明在球上定义的过拟合宽神经网络泛化效果很差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
期刊最新文献
Local Bootstrap for Network Data A Simple Bootstrap for Chatterjee's Rank Correlation Sensitivity models and bounds under sequential unmeasured confounding in longitudinal studies Studies in the history of probability and statistics, LI: the first conditional logistic regression Robust Covariate-Balancing Method in Learning Optimal Individualized Treatment Regimes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1