Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, Mirek Riedewald
{"title":"Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries","authors":"Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, Mirek Riedewald","doi":"10.1145/3578517","DOIUrl":null,"url":null,"abstract":"We study the question of when we can provide direct access to the k-th answer to a Conjunctive Query (CQ) according to a specified order over the answers in time logarithmic in the size of the database, following a preprocessing step that constructs a data structure in time quasilinear in database size. Specifically, we embark on the challenge of identifying the tractable answer orderings , that is, those orders that allow for such complexity guarantees. To better understand the computational challenge at hand, we also investigate the more modest task of providing access to only a single answer (i.e., finding the answer at a given position), a task that we refer to as the selection problem , and ask when it can be performed in quasilinear time. We also explore the question of when selection is indeed easier than ranked direct access. We begin with lexicographic orders . For each of the two problems, we give a decidable characterization (under conventional complexity assumptions) of the class of tractable lexicographic orders for every CQ without self-joins. We then continue to the more general orders by the sum of attribute weights and establish the corresponding decidable characterizations, for each of the two problems, of the tractable CQs without self-joins. Finally, we explore the question of when the satisfaction of Functional Dependencies (FDs) can be utilized for tractability and establish the corresponding generalizations of our characterizations for every set of unary FDs.","PeriodicalId":50915,"journal":{"name":"ACM Transactions on Database Systems","volume":"241 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3578517","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
We study the question of when we can provide direct access to the k-th answer to a Conjunctive Query (CQ) according to a specified order over the answers in time logarithmic in the size of the database, following a preprocessing step that constructs a data structure in time quasilinear in database size. Specifically, we embark on the challenge of identifying the tractable answer orderings , that is, those orders that allow for such complexity guarantees. To better understand the computational challenge at hand, we also investigate the more modest task of providing access to only a single answer (i.e., finding the answer at a given position), a task that we refer to as the selection problem , and ask when it can be performed in quasilinear time. We also explore the question of when selection is indeed easier than ranked direct access. We begin with lexicographic orders . For each of the two problems, we give a decidable characterization (under conventional complexity assumptions) of the class of tractable lexicographic orders for every CQ without self-joins. We then continue to the more general orders by the sum of attribute weights and establish the corresponding decidable characterizations, for each of the two problems, of the tractable CQs without self-joins. Finally, we explore the question of when the satisfaction of Functional Dependencies (FDs) can be utilized for tractability and establish the corresponding generalizations of our characterizations for every set of unary FDs.
期刊介绍:
Heavily used in both academic and corporate R&D settings, ACM Transactions on Database Systems (TODS) is a key publication for computer scientists working in data abstraction, data modeling, and designing data management systems. Topics include storage and retrieval, transaction management, distributed and federated databases, semantics of data, intelligent databases, and operations and algorithms relating to these areas. In this rapidly changing field, TODS provides insights into the thoughts of the best minds in database R&D.