{"title":"Carbon dioxide and water in the crust. Part 1: equation of state for the fluid","authors":"Shumpei YOSHIMURA","doi":"10.2465/jmps.221224a","DOIUrl":null,"url":null,"abstract":"H2O–CO2-dominated fluids play a crucial role in most geological phenomena involving fluid–mineral–melt interactions. The equation of state is an essential tool for understanding the phenomena because it predicts the thermodynamic properties of the fluids. The modified Lee–Kesler equation of state for H2O–CO2 mixture fluid developed by Duan and Zhang (2006) is the most accurate at present and is applicable to a wide pressure–temperature range (∼ 2573 K and ∼ 10 GPa). Because of its high accuracy and wide applicable range, the equation has been used for constructing solubility laws in silicate melts. In this paper I review the Duan and Zhang (2006) equation of state and present the calculation procedure. Because the equation for calculating the partial fugacity coefficient is erroneously presented in the original paper, the correct equation is provided here. A C-language code and a Windows executable program for computing thermodynamic properties are provided for the convenience of users. The influence of the nonideal behaviour of the H2O–CO2 mixture fluid on some geological situations is discussed.","PeriodicalId":51093,"journal":{"name":"Journal of Mineralogical and Petrological Sciences","volume":"26 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mineralogical and Petrological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2465/jmps.221224a","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MINERALOGY","Score":null,"Total":0}
引用次数: 0
Abstract
H2O–CO2-dominated fluids play a crucial role in most geological phenomena involving fluid–mineral–melt interactions. The equation of state is an essential tool for understanding the phenomena because it predicts the thermodynamic properties of the fluids. The modified Lee–Kesler equation of state for H2O–CO2 mixture fluid developed by Duan and Zhang (2006) is the most accurate at present and is applicable to a wide pressure–temperature range (∼ 2573 K and ∼ 10 GPa). Because of its high accuracy and wide applicable range, the equation has been used for constructing solubility laws in silicate melts. In this paper I review the Duan and Zhang (2006) equation of state and present the calculation procedure. Because the equation for calculating the partial fugacity coefficient is erroneously presented in the original paper, the correct equation is provided here. A C-language code and a Windows executable program for computing thermodynamic properties are provided for the convenience of users. The influence of the nonideal behaviour of the H2O–CO2 mixture fluid on some geological situations is discussed.
期刊介绍:
The Journal of Mineralogical and Petrological Sciences (JMPS) publishes original articles, reviews and letters in the fields of mineralogy, petrology, economic geology, geochemistry, planetary materials science, and related scientific fields. As an international journal, we aim to provide worldwide diffusion for the results of research in Japan, as well as to serve as a medium with high impact factor for the global scientific communication
Given the remarkable rate at which publications have been expanding to include several fields, including planetary and earth sciences, materials science, and instrumental analysis technology, the journal aims to encourage and develop a variety of such new interdisciplinary scientific fields, to encourage the wide scope of such new fields to bloom in the future, and to contribute to the rapidly growing international scientific community.
To cope with this emerging scientific environment, in April 2000 the journal''s two parent societies, MSJ* (The Mineralogical Society of Japan) and JAMPEG* (The Japanese Association of Mineralogists, Petrologists and Economic Geologists), combined their respective journals (the Mineralogical Journal and the Journal of Mineralogy, Petrology and Economic Geology). The result of this merger was the Journal of Mineralogical and Petrological Sciences, which has a greatly expanded and enriched scope compared to its predecessors.