BotBuster: Multi-Platform Bot Detection Using a Mixture of Experts

Lynnette Hui Xian Ng, Kathleen M. Carley
{"title":"BotBuster: Multi-Platform Bot Detection Using a Mixture of Experts","authors":"Lynnette Hui Xian Ng, Kathleen M. Carley","doi":"10.1609/icwsm.v17i1.22179","DOIUrl":null,"url":null,"abstract":"Despite rapid development, current bot detection models still face challenges in dealing with incomplete data and cross-platform applications. In this paper, we propose BotBuster, a social bot detector built with the concept of a mixture of experts approach. Each expert is trained to analyze a portion of account information, e.g. username, and are combined to estimate the probability that the account is a bot. Experiments on 10 Twitter datasets show that BotBuster outperforms popular bot-detection baselines (avg F1=73.54 vs avg F1=45.12). This is accompanied with F1=60.04 on a Reddit dataset and F1=60.92 on an external evaluation set. Further analysis shows that only 36 posts is required for a stable bot classification. Investigation shows that bot post features have changed across the years and can be difficult to differentiate from human features, making bot detection a difficult and ongoing problem.","PeriodicalId":338112,"journal":{"name":"Proceedings of the International AAAI Conference on Web and Social Media","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International AAAI Conference on Web and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v17i1.22179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Despite rapid development, current bot detection models still face challenges in dealing with incomplete data and cross-platform applications. In this paper, we propose BotBuster, a social bot detector built with the concept of a mixture of experts approach. Each expert is trained to analyze a portion of account information, e.g. username, and are combined to estimate the probability that the account is a bot. Experiments on 10 Twitter datasets show that BotBuster outperforms popular bot-detection baselines (avg F1=73.54 vs avg F1=45.12). This is accompanied with F1=60.04 on a Reddit dataset and F1=60.92 on an external evaluation set. Further analysis shows that only 36 posts is required for a stable bot classification. Investigation shows that bot post features have changed across the years and can be difficult to differentiate from human features, making bot detection a difficult and ongoing problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BotBuster:使用混合专家的多平台僵尸检测
尽管发展迅速,但目前的机器人检测模型在处理不完整数据和跨平台应用方面仍然面临挑战。在本文中,我们提出BotBuster,一个基于混合专家方法的概念构建的社交机器人检测器。每个专家都经过培训,可以分析一部分帐户信息,例如用户名,并结合起来估计该帐户是机器人的概率。在10个Twitter数据集上的实验表明,BotBuster优于流行的机器人检测基线(avg F1=73.54 vs avg F1=45.12)。在Reddit数据集上F1=60.04,在外部评估集上F1=60.92。进一步分析表明,稳定的bot分类只需要36个帖子。调查显示,多年来,机器人帖子的特征已经发生了变化,很难与人类特征区分开来,这使得机器人检测成为一个困难且持续存在的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statement of Removal AnnoBERT: Effectively Representing Multiple Annotators’ Label Choices to Improve Hate Speech Detection Just Another Day on Twitter: A Complete 24 Hours of Twitter Data #RoeOverturned: Twitter Dataset on the Abortion Rights Controversy SexWEs: Domain-Aware Word Embeddings via Cross-Lingual Semantic Specialisation for Chinese Sexism Detection in Social Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1