IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS Theory of Computing Pub Date : 2023-01-01 DOI:10.4086/toc.2023.v019a003
Irit Dinur, Inbal Livni Navon
{"title":"","authors":"Irit Dinur, Inbal Livni Navon","doi":"10.4086/toc.2023.v019a003","DOIUrl":null,"url":null,"abstract":"$ \\newcommand\\f{f} \\newcommand\\pf{g} $ Given a function $\\f:[N]^k\\rightarrow[M]^k$, the Z-test is a three-query test for checking if the function $\\f$ is a direct product, i.e., if there are functions $\\pf_1,\\ldots,\\pf_k:[N]\\to[M]$ such that $\\f(x_1,\\ldots,x_k)=(\\pf_1(x_1),\\ldots,\\pf_k(x_k))$ for every input $x\\in [N]^k$. This test was introduced by Impagliazzo et. al. (SICOMP 2012), who showed that if the test passes with probability $\\epsilon > \\exp(-\\sqrt k)$ then $\\f$ is $\\Omega(\\epsilon)$ correlated to a direct product function in some precise sense. It remained an open question whether the soundness of this test can be pushed all the way down to $\\exp(-k)$ (which would be optimal). This is our main result: we show that whenever $\\f$ passes the Z test with probability $\\epsilon > \\exp(-k)$, there must be a global reason for this, namely, $\\f$ is $\\Omega(\\epsilon)$ correlated to a direct product function, in the same sense of closeness. Towards proving our result we analyze the related (two-query) V-test, and prove a “restricted global structure” theorem for it. Such theorems were also proven in previous work on direct product testing in the small soundness regime. The most recent paper, by Dinur and Steurer (CCC 2014), analyzed the V test in the exponentially small soundness regime. We strengthen their conclusion by moving from an “in expectation” statement to a stronger “concentration of measure” type of statement, which we prove using reverse hyper-contractivity. This stronger statement allows us to proceed to analyze the Z test. ------------------ A preliminary version of this paper appeared in the Proceedings of the 32nd Computational Complexity Conference (CCC'17).","PeriodicalId":55992,"journal":{"name":"Theory of Computing","volume":"83 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4086/toc.2023.v019a003","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

$ \newcommand\f{f} \newcommand\pf{g} $ Given a function $\f:[N]^k\rightarrow[M]^k$, the Z-test is a three-query test for checking if the function $\f$ is a direct product, i.e., if there are functions $\pf_1,\ldots,\pf_k:[N]\to[M]$ such that $\f(x_1,\ldots,x_k)=(\pf_1(x_1),\ldots,\pf_k(x_k))$ for every input $x\in [N]^k$. This test was introduced by Impagliazzo et. al. (SICOMP 2012), who showed that if the test passes with probability $\epsilon > \exp(-\sqrt k)$ then $\f$ is $\Omega(\epsilon)$ correlated to a direct product function in some precise sense. It remained an open question whether the soundness of this test can be pushed all the way down to $\exp(-k)$ (which would be optimal). This is our main result: we show that whenever $\f$ passes the Z test with probability $\epsilon > \exp(-k)$, there must be a global reason for this, namely, $\f$ is $\Omega(\epsilon)$ correlated to a direct product function, in the same sense of closeness. Towards proving our result we analyze the related (two-query) V-test, and prove a “restricted global structure” theorem for it. Such theorems were also proven in previous work on direct product testing in the small soundness regime. The most recent paper, by Dinur and Steurer (CCC 2014), analyzed the V test in the exponentially small soundness regime. We strengthen their conclusion by moving from an “in expectation” statement to a stronger “concentration of measure” type of statement, which we prove using reverse hyper-contractivity. This stronger statement allows us to proceed to analyze the Z test. ------------------ A preliminary version of this paper appeared in the Proceedings of the 32nd Computational Complexity Conference (CCC'17).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1