José R. Serrano, J. Javier López, Jaime Martín, Gabriela Bracho
{"title":"Extension of a Zero-Dimensional Mixing-Controlled Combustion Model for the Development of a NOx–Free System Based on the Oxy-Combustion Concept","authors":"José R. Serrano, J. Javier López, Jaime Martín, Gabriela Bracho","doi":"10.1595/205651324x16963284171824","DOIUrl":null,"url":null,"abstract":"Oxy-combustion is a promising concept to achieve an extremely clean combustion, independently of the fuel type, because, on the one hand, it is a NOx-free combustion and, on the other hand, the CO2 produced during combustion can be easily captured once the water vapor is removed from the exhaust gases stream, consequently allowing also carbon neutral operation. An existing 0D, mixing-controlled combustion model, developed for a standard diesel combustion scenario, has been adapted to the oxy-fuel combustion scenario. Initially, the model over-predicted the heat release at the end of the combustion process. The main model adaptation was to modify the relationship between the average YO2 and the effective YO2 (i.e. the one of the charge actually entrained by the spray), to be consistent with the significant increase in compression ratio needed in the oxy-fuel context. As a result, a model able to correctly predict the combustion behaviour at any operating condition has been obtained, which finally represents a very suitable tool to assist in the concept development.","PeriodicalId":14807,"journal":{"name":"Johnson Matthey Technology Review","volume":"4 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Johnson Matthey Technology Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1595/205651324x16963284171824","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Oxy-combustion is a promising concept to achieve an extremely clean combustion, independently of the fuel type, because, on the one hand, it is a NOx-free combustion and, on the other hand, the CO2 produced during combustion can be easily captured once the water vapor is removed from the exhaust gases stream, consequently allowing also carbon neutral operation. An existing 0D, mixing-controlled combustion model, developed for a standard diesel combustion scenario, has been adapted to the oxy-fuel combustion scenario. Initially, the model over-predicted the heat release at the end of the combustion process. The main model adaptation was to modify the relationship between the average YO2 and the effective YO2 (i.e. the one of the charge actually entrained by the spray), to be consistent with the significant increase in compression ratio needed in the oxy-fuel context. As a result, a model able to correctly predict the combustion behaviour at any operating condition has been obtained, which finally represents a very suitable tool to assist in the concept development.
期刊介绍:
Johnson Matthey Technology Review publishes articles, reviews and short reports on science enabling cleaner air, good health and efficient use of natural resources. Areas of application and fundamental science will be considered in the fields of:Advanced materials[...]Catalysis[...][...]Characterisation[...]Electrochemistry[...]Emissions control[...]Fine and speciality chemicals[...]Historical[...]Industrial processes[...]Materials and metallurgy[...]Modelling[...]PGM and specialist metallurgy[...]Pharmaceutical and medical science[...]Surface chemistry and coatings[...]Sustainable technologies.