{"title":"Count Data Modeling for Predicting Crash Severity on Indian Highways","authors":"Krantikumar V. Mhetre, Aruna D. Thube","doi":"10.48084/etasr.6172","DOIUrl":null,"url":null,"abstract":"This study collected data on road accidents for the years 2016-2020 for the NH-48 highway in Maharashtra, India to model their conditions. Road crash data models were developed using 70% of actual data for training and 30% for testing purposes. Negative binomial regression modeling was used to predict crash fatalities. The results showed that the factors that affected the fatality of road crashes were head-on-collision, friction, time zone, and weather conditions of the crash. The developed models were validated and tested using log-likelihood, AIC, BIC, MAD, MSE, RMSE, and MAPE values. Head-on-collision, AM, PM, light rain, mist/fog, heavy rain, fine, and cloudy were positively associated with the fatality of road crashes, while friction was negatively associated. The developed models can be used to predict the fatality/non-fatality of road crashes and implement road safety strategies on highways to reduce them.","PeriodicalId":11826,"journal":{"name":"Engineering, Technology & Applied Science Research","volume":"34 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering, Technology & Applied Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48084/etasr.6172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study collected data on road accidents for the years 2016-2020 for the NH-48 highway in Maharashtra, India to model their conditions. Road crash data models were developed using 70% of actual data for training and 30% for testing purposes. Negative binomial regression modeling was used to predict crash fatalities. The results showed that the factors that affected the fatality of road crashes were head-on-collision, friction, time zone, and weather conditions of the crash. The developed models were validated and tested using log-likelihood, AIC, BIC, MAD, MSE, RMSE, and MAPE values. Head-on-collision, AM, PM, light rain, mist/fog, heavy rain, fine, and cloudy were positively associated with the fatality of road crashes, while friction was negatively associated. The developed models can be used to predict the fatality/non-fatality of road crashes and implement road safety strategies on highways to reduce them.