Application of Seasonal Trend Decomposition using Loess and Long Short-Term Memory in Peak Load Forecasting Model in Tien Giang

IF 1.5 0 ENGINEERING, MULTIDISCIPLINARY Engineering, Technology & Applied Science Research Pub Date : 2023-10-13 DOI:10.48084/etasr.6181
Ngoc-Hung Duong, Minh-Tam Nguyen, Thanh-Hoan Nguyen, Thanh-Phong Tran
{"title":"Application of Seasonal Trend Decomposition using Loess and Long Short-Term Memory in Peak Load Forecasting Model in Tien Giang","authors":"Ngoc-Hung Duong, Minh-Tam Nguyen, Thanh-Hoan Nguyen, Thanh-Phong Tran","doi":"10.48084/etasr.6181","DOIUrl":null,"url":null,"abstract":"Daily peak load forecasting is critical for energy providers to meet the loads of grid-connected consumers. This study proposed a Seasonal Trend decomposition using Loess combined with Long Short-Term Memory (STL-LTSM) method and compared its performance on peak forecasting of electrical energy demand with Convolutional Neural Network and LSTM (CNN-LSTM), Wavenet, and the classic approaches Artificial Neural Network (ANN) and LSTM. The study evaluated the models using demand data from the power system in Tien Giang province, Vietnam, from 2020 to 2022, considering historical demand, holidays, and weather variables as input characteristics. The results showed that the proposed STL-LSTM model can predict future demand with lower Base Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). Therefore, the proposed method can help energy suppliers make smart decisions and plan for future demand.","PeriodicalId":11826,"journal":{"name":"Engineering, Technology & Applied Science Research","volume":"37 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering, Technology & Applied Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48084/etasr.6181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Daily peak load forecasting is critical for energy providers to meet the loads of grid-connected consumers. This study proposed a Seasonal Trend decomposition using Loess combined with Long Short-Term Memory (STL-LTSM) method and compared its performance on peak forecasting of electrical energy demand with Convolutional Neural Network and LSTM (CNN-LSTM), Wavenet, and the classic approaches Artificial Neural Network (ANN) and LSTM. The study evaluated the models using demand data from the power system in Tien Giang province, Vietnam, from 2020 to 2022, considering historical demand, holidays, and weather variables as input characteristics. The results showed that the proposed STL-LSTM model can predict future demand with lower Base Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). Therefore, the proposed method can help energy suppliers make smart decisions and plan for future demand.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黄土季节性趋势分解与长短期记忆在天江地区高峰负荷预测模型中的应用
每日峰值负荷预测对于能源供应商满足并网用户的负荷至关重要。本文提出了一种基于黄土结合长短期记忆(STL-LTSM)的季节性趋势分解方法,并将其与卷积神经网络和LSTM (CNN-LSTM)、小波网络(Wavenet)以及人工神经网络和LSTM的经典方法在电力需求峰值预测方面的性能进行了比较。该研究使用2020年至2022年越南天江省电力系统的需求数据对模型进行了评估,并将历史需求、假日和天气变量作为输入特征。结果表明,本文提出的STL-LSTM模型能够以较低的基本均方误差(RMSE)和平均绝对百分比误差(MAPE)预测未来需求。因此,所提出的方法可以帮助能源供应商做出明智的决策,并为未来的需求做计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering, Technology & Applied Science Research
Engineering, Technology & Applied Science Research ENGINEERING, MULTIDISCIPLINARY-
CiteScore
3.00
自引率
46.70%
发文量
222
审稿时长
11 weeks
期刊最新文献
Malware Attack Detection in Large Scale Networks using the Ensemble Deep Restricted Boltzmann Machine Enhancement of Power System Security by the Intelligent Control of a Static Synchronous Series Compensator Mix Design of Fly Ash and GGBS based Geopolymer Concrete activated with Water Glass A New Approach on the Egyptian Black Sand Ilmenite Alteration Processes Boric Acid as a Safe Insecticide for Controlling the Mediterranean Fruit Fly Ceratitis Capitata Wiedemann (Diptera: Tephritidae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1