Big Data in Education: Students at Risk as a Case Study

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-10-13 DOI:10.48084/etasr.6190
Ahmed B. Altamimi
{"title":"Big Data in Education: Students at Risk as a Case Study","authors":"Ahmed B. Altamimi","doi":"10.48084/etasr.6190","DOIUrl":null,"url":null,"abstract":"This paper analyzes various machine learning algorithms to predict student failure in a specific educational dataset and a specific environment. The paper handles the prediction of student failure given the students' grades, course difficulty level, and GPA, differing from most of the provided studies in the literature, where focus is given to the surrounding environment. The main aim is to early detect students at risk of academic underperformance and implement specific interventions to enhance their academic outcomes. A diverse set of eleven Machine Learning (ML) algorithms was used to analyze the dataset. The data went through preprocessing, and features were engineered to effectively capture essential information that may impact students' academic performance. A meticulous process for model selection and evaluation was utilized to compare the algorithms' performance with regard to metrics such as accuracy, precision, recall, F-score, specificity, and balanced accuracy. Our results demonstrate significant variability in the performance of the different algorithms, with Artificial Neural Networks (ANNs) and Convolutional Neural Networks (CNNs) showing the highest overall performance, followed closely by Gradient Boosting Classifier (GBC), Neuro-Fuzzy, and Random Forest (RF). The other algorithms exhibit varying performance levels, with the Recurrent Neural Networks (RNNs) showing the weakest results in recall and F-score. Educational institutions can use the insight gained from this study to make data-driven decisions and design targeted interventions to help students at risk succeed academically. Furthermore, the methodology presented in this paper can be generalized and applied to other educational datasets for similar predictive purposes.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48084/etasr.6190","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper analyzes various machine learning algorithms to predict student failure in a specific educational dataset and a specific environment. The paper handles the prediction of student failure given the students' grades, course difficulty level, and GPA, differing from most of the provided studies in the literature, where focus is given to the surrounding environment. The main aim is to early detect students at risk of academic underperformance and implement specific interventions to enhance their academic outcomes. A diverse set of eleven Machine Learning (ML) algorithms was used to analyze the dataset. The data went through preprocessing, and features were engineered to effectively capture essential information that may impact students' academic performance. A meticulous process for model selection and evaluation was utilized to compare the algorithms' performance with regard to metrics such as accuracy, precision, recall, F-score, specificity, and balanced accuracy. Our results demonstrate significant variability in the performance of the different algorithms, with Artificial Neural Networks (ANNs) and Convolutional Neural Networks (CNNs) showing the highest overall performance, followed closely by Gradient Boosting Classifier (GBC), Neuro-Fuzzy, and Random Forest (RF). The other algorithms exhibit varying performance levels, with the Recurrent Neural Networks (RNNs) showing the weakest results in recall and F-score. Educational institutions can use the insight gained from this study to make data-driven decisions and design targeted interventions to help students at risk succeed academically. Furthermore, the methodology presented in this paper can be generalized and applied to other educational datasets for similar predictive purposes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
教育中的大数据:学生风险案例研究
本文分析了在特定教育数据集和特定环境中预测学生失败的各种机器学习算法。本文根据学生的成绩、课程难度水平和GPA来预测学生的不及格,这与大多数文献中提供的研究不同,这些研究的重点是周围环境。其主要目的是早期发现有学业表现不佳风险的学生,并实施具体的干预措施,以提高他们的学业成绩。使用11种不同的机器学习(ML)算法来分析数据集。这些数据经过预处理,特征被设计成有效地捕获可能影响学生学习成绩的基本信息。模型选择和评估是一个细致的过程,用于比较算法在准确性、精密度、召回率、f分数、特异性和平衡准确性等指标方面的性能。我们的研究结果表明,不同算法的性能存在显著差异,人工神经网络(ann)和卷积神经网络(cnn)表现出最高的整体性能,紧随其后的是梯度增强分类器(GBC)、神经模糊和随机森林(RF)。其他算法表现出不同的性能水平,其中循环神经网络(RNNs)在召回和f得分方面表现出最弱的结果。教育机构可以利用从这项研究中获得的见解来做出数据驱动的决策,并设计有针对性的干预措施,帮助有风险的学生在学业上取得成功。此外,本文提出的方法可以推广并应用于其他教育数据集,以达到类似的预测目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1