Mohanad Salih Farhan Al-Jadiri, Abdul Muttalib I. Said
{"title":"Reinforced Concrete Columns Insulated by Different Gypsum Layers Exposed to 900°C One Side Fire Flame","authors":"Mohanad Salih Farhan Al-Jadiri, Abdul Muttalib I. Said","doi":"10.48084/etasr.6083","DOIUrl":null,"url":null,"abstract":"This study investigated the effect of high-temperature fire flame on reinforced concrete columns coated with a layer of gypsum insulation. Six samples were cast and cured in a hot water bath at 67°C, covered on one side by 10 and 20 mm thick layers of gypsum plaster. The samples were exposed to a 900°C fire flame in a hydrocarbon fire furnace for one and two hours. The results showed that the gypsum plaster layer prevented a high-temperature rise within the core of the column. The differences between all gypsum-coated columns varied compared to those of the reference samples. The gypsum-coated columns had reduced axial displacements and no spalling and visible cracks on their faces. The improvement in the compressive strength of concrete will be discussed in a future paper. This study was carried out following ACI-318 and ASTM C1529.","PeriodicalId":11826,"journal":{"name":"Engineering, Technology & Applied Science Research","volume":"77 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering, Technology & Applied Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48084/etasr.6083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the effect of high-temperature fire flame on reinforced concrete columns coated with a layer of gypsum insulation. Six samples were cast and cured in a hot water bath at 67°C, covered on one side by 10 and 20 mm thick layers of gypsum plaster. The samples were exposed to a 900°C fire flame in a hydrocarbon fire furnace for one and two hours. The results showed that the gypsum plaster layer prevented a high-temperature rise within the core of the column. The differences between all gypsum-coated columns varied compared to those of the reference samples. The gypsum-coated columns had reduced axial displacements and no spalling and visible cracks on their faces. The improvement in the compressive strength of concrete will be discussed in a future paper. This study was carried out following ACI-318 and ASTM C1529.