A Fairness-based Cell Selection Mechanism for Ultra-Dense Networks (UDNs)

IF 1.5 0 ENGINEERING, MULTIDISCIPLINARY Engineering, Technology & Applied Science Research Pub Date : 2023-10-13 DOI:10.48084/etasr.6106
Sultan Alotaibi
{"title":"A Fairness-based Cell Selection Mechanism for Ultra-Dense Networks (UDNs)","authors":"Sultan Alotaibi","doi":"10.48084/etasr.6106","DOIUrl":null,"url":null,"abstract":"A typical 5G Ultra-Dense Network (UDN) comprises different types of Base Stations (BSs) in its structure. Dense deployment of small-cell BSs within a macrocell BS's coverage offers significant benefits, as the distance between a User Equipment (UE) and its small-cell BS is shorter with robust signals. Thus, the network capacity will increase dramatically. However, selecting an appropriate small-cell BS for a particular UE becomes a challenge in 5G UDNs. This study proposed a mechanism to address the cell selection problem and maximize fairness among UEs when making the cell selection decision. The proposed mechanism considered different parameters. The load balance for each small-cell BS was considered to fairly distribute UEs and avoid traffic congestion. Moreover, the signal strength was considered with the achievable data rate for all small-cell BSs to stimulate idle small-cell BSs to be in operating mode. A simulation was carried out in MATLAB to evaluate the proposed mechanism. Signal-to-Interference-Ratio (SINR) and Signal Strength (SS) -based strategies were also simulated for comparison. The proposed solution outperformed the other schemes in terms of fairness, as the UEs attached to the system were fairly distributed among small-cell BSs. Furthermore, the proposed mechanism achieved the best radio resource distribution in terms of fairness compared to the two other schemes.","PeriodicalId":11826,"journal":{"name":"Engineering, Technology & Applied Science Research","volume":"47 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering, Technology & Applied Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48084/etasr.6106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A typical 5G Ultra-Dense Network (UDN) comprises different types of Base Stations (BSs) in its structure. Dense deployment of small-cell BSs within a macrocell BS's coverage offers significant benefits, as the distance between a User Equipment (UE) and its small-cell BS is shorter with robust signals. Thus, the network capacity will increase dramatically. However, selecting an appropriate small-cell BS for a particular UE becomes a challenge in 5G UDNs. This study proposed a mechanism to address the cell selection problem and maximize fairness among UEs when making the cell selection decision. The proposed mechanism considered different parameters. The load balance for each small-cell BS was considered to fairly distribute UEs and avoid traffic congestion. Moreover, the signal strength was considered with the achievable data rate for all small-cell BSs to stimulate idle small-cell BSs to be in operating mode. A simulation was carried out in MATLAB to evaluate the proposed mechanism. Signal-to-Interference-Ratio (SINR) and Signal Strength (SS) -based strategies were also simulated for comparison. The proposed solution outperformed the other schemes in terms of fairness, as the UEs attached to the system were fairly distributed among small-cell BSs. Furthermore, the proposed mechanism achieved the best radio resource distribution in terms of fairness compared to the two other schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于公平性的超密集网络小区选择机制
典型的5G超密集网络(UDN)在其结构中包含不同类型的基站(BSs)。由于用户设备(UE)与其小型基站BS之间的距离较短,信号也较强,因此在大型基站BS的覆盖范围内密集部署小型基站BS具有显著的优势。因此,网络容量将急剧增加。然而,在5G udn中,为特定的终端选择合适的小蜂窝基站是一个挑战。本研究提出了一种解决单元选择问题的机制,并在进行单元选择决策时最大化ue之间的公平性。提出的机制考虑了不同的参数。考虑每个小蜂窝基站的负载平衡,以公平分配ue和避免交通拥塞。此外,还考虑了所有小蜂窝基站的信号强度和可实现的数据速率,以刺激空闲的小蜂窝基站进入工作模式。在MATLAB中进行了仿真,以评估所提出的机制。基于信号干扰比(SINR)和信号强度(SS)的策略也进行了仿真比较。该方案在公平性方面优于其他方案,因为附加到系统上的ue在小蜂窝基站之间公平分配。此外,与其他两种方案相比,该机制在公平性方面实现了最佳的无线电资源分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering, Technology & Applied Science Research
Engineering, Technology & Applied Science Research ENGINEERING, MULTIDISCIPLINARY-
CiteScore
3.00
自引率
46.70%
发文量
222
审稿时长
11 weeks
期刊最新文献
Malware Attack Detection in Large Scale Networks using the Ensemble Deep Restricted Boltzmann Machine Enhancement of Power System Security by the Intelligent Control of a Static Synchronous Series Compensator Mix Design of Fly Ash and GGBS based Geopolymer Concrete activated with Water Glass A New Approach on the Egyptian Black Sand Ilmenite Alteration Processes Boric Acid as a Safe Insecticide for Controlling the Mediterranean Fruit Fly Ceratitis Capitata Wiedemann (Diptera: Tephritidae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1