Three-dimensional reconstruction of mobile binocular stereo vision based on push-broom line structured light for workpiece surface

Yue Wang, Xueyou Han, Rui Jing, Hailan Zhang, Lei Yin, Xuefeng Zhang, Xiangjun Wang
{"title":"Three-dimensional reconstruction of mobile binocular stereo vision based on push-broom line structured light for workpiece surface","authors":"Yue Wang, Xueyou Han, Rui Jing, Hailan Zhang, Lei Yin, Xuefeng Zhang, Xiangjun Wang","doi":"10.1364/josaa.495352","DOIUrl":null,"url":null,"abstract":"Stereo vision technology based on line structured light can effectively solve the problem of a three-dimensional (3D) reconstruction of a smooth surface. A method for 3D reconstruction of mobile binocular stereo vision based on push-broom line structured light for a workpiece surface is presented in this paper. The subpixel coordinates of the light strip centers of the line structured light are obtained by the Steger algorithm while the binocular module moves along the guide rail, and the polar constraint is used to achieve the matching of the extracted light strip centers. As a result, the 3D coordinates of the light strip centers in each location can be calculated because of the known interior and external parameters of the binocular module. To obtain the 3D point cloud data of the entire surface, a relative pose optimization method with respect to the initial frame is proposed, which accurately estimates the pose of the cameras in each location with respect to that in the initial location and unifies the 3D coordinates of the light strip centers in each location to the datum coordinates. The relative pose optimization method first estimates the rough values by using the direct linear transform method, and then iteratively calculates the refined solutions based on the principle of minimizing the re-projection errors. Simulation data and substantial experimental results validate the effectiveness of our method. Our method is compared to the direct linear transform method and the frame-by-frame transfer method, and the root mean square error (RMSE) of the distance from 3D point cloud to fitted plane is used to evaluate the 3D reconstruction accuracy. The repeatability experiment shows that the RMSE from our method is as low as 0.83 mm.","PeriodicalId":17413,"journal":{"name":"Journal of the Optical Society of America","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josaa.495352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stereo vision technology based on line structured light can effectively solve the problem of a three-dimensional (3D) reconstruction of a smooth surface. A method for 3D reconstruction of mobile binocular stereo vision based on push-broom line structured light for a workpiece surface is presented in this paper. The subpixel coordinates of the light strip centers of the line structured light are obtained by the Steger algorithm while the binocular module moves along the guide rail, and the polar constraint is used to achieve the matching of the extracted light strip centers. As a result, the 3D coordinates of the light strip centers in each location can be calculated because of the known interior and external parameters of the binocular module. To obtain the 3D point cloud data of the entire surface, a relative pose optimization method with respect to the initial frame is proposed, which accurately estimates the pose of the cameras in each location with respect to that in the initial location and unifies the 3D coordinates of the light strip centers in each location to the datum coordinates. The relative pose optimization method first estimates the rough values by using the direct linear transform method, and then iteratively calculates the refined solutions based on the principle of minimizing the re-projection errors. Simulation data and substantial experimental results validate the effectiveness of our method. Our method is compared to the direct linear transform method and the frame-by-frame transfer method, and the root mean square error (RMSE) of the distance from 3D point cloud to fitted plane is used to evaluate the 3D reconstruction accuracy. The repeatability experiment shows that the RMSE from our method is as low as 0.83 mm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于推扫线结构光的移动双目立体视觉工件表面三维重建
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: OSA was published by The Optical Society from January 1917 to December 1983 before dividing into JOSA A: Optics and Image Science and JOSA B: Optical Physics in 1984.
期刊最新文献
Viewpoint-dependent highlight depiction with microdisparity for autostereoscopic display Optimal Data Acquisition In Tomography Photoacoustic image reconstruction with a new objective function using TGV and ESTGV as a regularization parameter. Color Image Guided Depth Image Reconstruction Based on Total Variation Network 2π ambiguity-free digital holography method for stepped phase imaging:Erratum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1