Pneumonia Detection in Chest X-Rays using Transfer Learning and TPUs

IF 1.5 0 ENGINEERING, MULTIDISCIPLINARY Engineering, Technology & Applied Science Research Pub Date : 2023-10-13 DOI:10.48084/etasr.6335
Niranjan C. Kundur, Bellary Chiterki Anil, Praveen M. Dhulavvagol, Renuka Ganiger, Balakrishnan Ramadoss
{"title":"Pneumonia Detection in Chest X-Rays using Transfer Learning and TPUs","authors":"Niranjan C. Kundur, Bellary Chiterki Anil, Praveen M. Dhulavvagol, Renuka Ganiger, Balakrishnan Ramadoss","doi":"10.48084/etasr.6335","DOIUrl":null,"url":null,"abstract":"Pneumonia is a severe respiratory disease with potentially life-threatening consequences if not promptly diagnosed and treated. Chest X-rays are commonly employed for pneumonia detection, but interpreting the images can pose challenges. This study explores the efficacy of four popular transfer learning models, namely VGG16, ResNet, InceptionNet, and DenseNet, alongside a custom CNN model for this task. The model performance is evaluated using Mean Absolute Error (MAE) as the performance metric. The findings reveal that VGG16 outperforms the other transfer learning models, achieving the lowest MAE (66.19). To optimize the model training process, a distributed training strategy utilizing TensorFlow's TPU (Tensor Processing Unit) strategy is implemented. The custom CNN model is parallelized using TPU's multiple instances available over the cloud, enabling efficient computation parallelization and significantly reducing model training times. The experimental results demonstrate a remarkable decrease of 68.36% and 54.74% in model training times for the CNN model when trained using TPU compared to training on a CPU and GPU, respectively.","PeriodicalId":11826,"journal":{"name":"Engineering, Technology & Applied Science Research","volume":"1 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering, Technology & Applied Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48084/etasr.6335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Pneumonia is a severe respiratory disease with potentially life-threatening consequences if not promptly diagnosed and treated. Chest X-rays are commonly employed for pneumonia detection, but interpreting the images can pose challenges. This study explores the efficacy of four popular transfer learning models, namely VGG16, ResNet, InceptionNet, and DenseNet, alongside a custom CNN model for this task. The model performance is evaluated using Mean Absolute Error (MAE) as the performance metric. The findings reveal that VGG16 outperforms the other transfer learning models, achieving the lowest MAE (66.19). To optimize the model training process, a distributed training strategy utilizing TensorFlow's TPU (Tensor Processing Unit) strategy is implemented. The custom CNN model is parallelized using TPU's multiple instances available over the cloud, enabling efficient computation parallelization and significantly reducing model training times. The experimental results demonstrate a remarkable decrease of 68.36% and 54.74% in model training times for the CNN model when trained using TPU compared to training on a CPU and GPU, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用迁移学习和tpu检测胸片中的肺炎
肺炎是一种严重的呼吸道疾病,如果不及时诊断和治疗,可能会造成危及生命的后果。胸部x光通常用于肺炎检测,但解释图像可能会带来挑战。本研究探讨了四种流行的迁移学习模型(即VGG16, ResNet, InceptionNet和DenseNet)以及用于该任务的自定义CNN模型的有效性。使用平均绝对误差(MAE)作为性能度量来评估模型的性能。结果表明,VGG16迁移学习模型的MAE最低(66.19),优于其他迁移学习模型。为了优化模型训练过程,利用TensorFlow的TPU (Tensor Processing Unit,张量处理单元)策略实现了分布式训练策略。自定义CNN模型使用TPU在云上可用的多个实例进行并行化,从而实现高效的计算并行化并显着减少模型训练时间。实验结果表明,与在CPU和GPU上训练相比,使用TPU训练CNN模型的训练次数分别减少了68.36%和54.74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering, Technology & Applied Science Research
Engineering, Technology & Applied Science Research ENGINEERING, MULTIDISCIPLINARY-
CiteScore
3.00
自引率
46.70%
发文量
222
审稿时长
11 weeks
期刊最新文献
Malware Attack Detection in Large Scale Networks using the Ensemble Deep Restricted Boltzmann Machine Enhancement of Power System Security by the Intelligent Control of a Static Synchronous Series Compensator Mix Design of Fly Ash and GGBS based Geopolymer Concrete activated with Water Glass A New Approach on the Egyptian Black Sand Ilmenite Alteration Processes Boric Acid as a Safe Insecticide for Controlling the Mediterranean Fruit Fly Ceratitis Capitata Wiedemann (Diptera: Tephritidae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1