Laser-driven ultrafast impedance spectroscopy for measuring complex ion hopping processes

Pham, Kim H., Cushing, Scott K.
{"title":"Laser-driven ultrafast impedance spectroscopy for measuring complex ion\n hopping processes","authors":"Pham, Kim H., Cushing, Scott K.","doi":"10.48550/arxiv.2310.09359","DOIUrl":null,"url":null,"abstract":"Superionic conductors, or solid-state ion-conductors that surpass 0.01 S/cm in conductivity, can enable more energy dense batteries, robust artificial ion pumps, and optimized fuel cells. However, tailoring superionic conductors require precise knowledge of ion migration mechanisms that are still not well understood, due to limitations set by available spectroscopic tools. Most spectroscopic techniques do not probe ion hopping on its inherent picosecond timescale, nor the many-body correlations between the migrating ions, lattice vibrational modes, and charge screening clouds--all of which are posited to greatly enhance ionic conduction. Here, we develop an ultrafast technique that measures the time-resolved change in impedance upon light excitation which triggers selective ion-coupled correlations. We apply our proposed technique to study a solid-state Li+ conductor Li0.5La0.5TiO3 (LLTO). We compare the relative change in impedance of LLTO before and after a UV to THz frequency excitation to map the corresponding ion-many-body-interaction correlations. We also develop a cost-effective, non-time-resolved laser-driven impedance method that is more accessible for lab-scale adoption. From both our techniques, we determine that electronic screening and phonon-mode interactions dominate the ion migration pathway of LLTO. Although we only present one case study, our technique can also probe O2-, H+, or other ion and charge carrier transport phenomena where ultrafast correlations control transport. Furthermore, the temporal relaxation of the measured impedance can distinguish ion transport effects caused by many-body correlations, optical heating, correlation, and memory behavior.","PeriodicalId":496270,"journal":{"name":"arXiv (Cornell University)","volume":"263 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv (Cornell University)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arxiv.2310.09359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Superionic conductors, or solid-state ion-conductors that surpass 0.01 S/cm in conductivity, can enable more energy dense batteries, robust artificial ion pumps, and optimized fuel cells. However, tailoring superionic conductors require precise knowledge of ion migration mechanisms that are still not well understood, due to limitations set by available spectroscopic tools. Most spectroscopic techniques do not probe ion hopping on its inherent picosecond timescale, nor the many-body correlations between the migrating ions, lattice vibrational modes, and charge screening clouds--all of which are posited to greatly enhance ionic conduction. Here, we develop an ultrafast technique that measures the time-resolved change in impedance upon light excitation which triggers selective ion-coupled correlations. We apply our proposed technique to study a solid-state Li+ conductor Li0.5La0.5TiO3 (LLTO). We compare the relative change in impedance of LLTO before and after a UV to THz frequency excitation to map the corresponding ion-many-body-interaction correlations. We also develop a cost-effective, non-time-resolved laser-driven impedance method that is more accessible for lab-scale adoption. From both our techniques, we determine that electronic screening and phonon-mode interactions dominate the ion migration pathway of LLTO. Although we only present one case study, our technique can also probe O2-, H+, or other ion and charge carrier transport phenomena where ultrafast correlations control transport. Furthermore, the temporal relaxation of the measured impedance can distinguish ion transport effects caused by many-body correlations, optical heating, correlation, and memory behavior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
测量复杂离子跳变过程的激光驱动超快阻抗谱
超离子导体,或电导率超过0.01 S/cm的固态离子导体,可以实现更高能量密度的电池,强大的人工离子泵和优化的燃料电池。然而,由于现有光谱工具的限制,定制超离子导体需要对离子迁移机制有精确的了解,但这一机制仍未得到很好的理解。大多数光谱技术不能探测其固有的皮秒时间尺度上的离子跳跃,也不能探测迁移离子、晶格振动模式和电荷屏蔽云之间的多体相关性——所有这些都被认为可以大大增强离子传导。在这里,我们开发了一种超快技术,可以测量光激发时阻抗的时间分辨变化,从而触发选择性离子耦合相关性。我们将所提出的技术应用于固态Li+导体Li0.5La0.5TiO3 (LLTO)的研究。我们比较了紫外和太赫兹频率激发前后LLTO阻抗的相对变化,以绘制相应的离子-多体相互作用相关性。我们还开发了一种成本效益高,非时间分辨的激光驱动阻抗方法,更容易用于实验室规模的采用。从我们的两种技术中,我们确定电子筛选和声子模式相互作用主导了LLTO的离子迁移途径。虽然我们只提出了一个案例研究,但我们的技术也可以探测O2-, H+或其他超快相关控制传输的离子和电荷载流子传输现象。此外,测量阻抗的时间弛豫可以区分由多体相关、光加热、相关和记忆行为引起的离子输运效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CCD Photometry of the Globular Cluster NGC 5897 The Distribution of Sandpile Groups of Random Graphs with their Pairings CLiF-VQA: Enhancing Video Quality Assessment by Incorporating High-Level Semantic Information related to Human Feelings Full-dry Flipping Transfer Method for van der Waals Heterostructure Code-Aided Channel Estimation in LDPC-Coded MIMO Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1