Induction and repair of closely opposed pyrimidine dimers in Saccharomyces cerevisiae

Richard J. Reynolds
{"title":"Induction and repair of closely opposed pyrimidine dimers in Saccharomyces cerevisiae","authors":"Richard J. Reynolds","doi":"10.1016/0167-8817(87)90017-4","DOIUrl":null,"url":null,"abstract":"<div><p>Pyrimidine dimer-DNA glycosylase activity prepared from <em>Micrococcus luteus</em> has been used to develop an enzyme-sensitive site assay for the detection and quantification of closely opposed pyrimidine dimers in the nuclear DNA of UV-irradiated yeast. With this assay, closely opposed dimers were found to be induced as a linear function of dose from 0 to 200 J/m<sup>2</sup> (254 nm). Closely opposed dimer frequencies decreased during the incubation of UV-irradiated, excision repair-proficient cells under liquid-holding conditions in the dark and during post-irradiation exposure of excision-deficient cells to photoreactivating light. Incubation of excision-deficient cells in the dark had no effect on the frequency of closely opposed dimers for up to 16 h. These results indicate that closely opposed dimers in UV-irradiated yeast are subject to repair by enzymatic photoreactivation and/or by dark-repair processes dependent, at least in part, upon functions necessary for normal excision repair. The genetic and biochemical implications of these results are discussed.</p></div>","PeriodicalId":100936,"journal":{"name":"Mutation Research/DNA Repair Reports","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1987-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0167-8817(87)90017-4","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/DNA Repair Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0167881787900174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Pyrimidine dimer-DNA glycosylase activity prepared from Micrococcus luteus has been used to develop an enzyme-sensitive site assay for the detection and quantification of closely opposed pyrimidine dimers in the nuclear DNA of UV-irradiated yeast. With this assay, closely opposed dimers were found to be induced as a linear function of dose from 0 to 200 J/m2 (254 nm). Closely opposed dimer frequencies decreased during the incubation of UV-irradiated, excision repair-proficient cells under liquid-holding conditions in the dark and during post-irradiation exposure of excision-deficient cells to photoreactivating light. Incubation of excision-deficient cells in the dark had no effect on the frequency of closely opposed dimers for up to 16 h. These results indicate that closely opposed dimers in UV-irradiated yeast are subject to repair by enzymatic photoreactivation and/or by dark-repair processes dependent, at least in part, upon functions necessary for normal excision repair. The genetic and biochemical implications of these results are discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
密切对立嘧啶二聚体在酿酒酵母中的诱导与修复
利用黄体微球菌制备的嘧啶二聚体-DNA糖基酶活性,建立了一种酶敏感位点测定法,用于检测和定量紫外线照射酵母核DNA中紧密相反的嘧啶二聚体。通过该实验,发现在0至200 J/m2 (254 nm)范围内,密切相反的二聚体被诱导成线性函数。在紫外线照射下,精通切除修复的细胞在黑暗中保持液体条件下孵育期间,以及在照射后将切除缺陷细胞暴露于光活化光下期间,紧密相反的二聚体频率降低。切除缺陷细胞在黑暗中孵育长达16小时,对紧密对立二聚体的频率没有影响。这些结果表明,在紫外线照射的酵母中,紧密对立二聚体可以通过酶光再激活和/或至少部分依赖于正常切除修复所需功能的黑暗修复过程进行修复。讨论了这些结果的遗传和生化意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of an X-ray-hypersensitive mutant of V79 Chinese hamster cells Establishment of a monoclonal antibody recognizing ultraviolet light-induced (6-4) photoproducts Repair of the plasmid pBR322 damaged by γ-irradiation or by restriction endonucleases using different recombination-proficient E. coli strains Radiosensitive Down syndrome lymphoblastoid lines have normal ionizing-radiation-induced inhibition of DNA synthesis An analysis of the mutagenicity of 1,2-dibromoethane to Escherichia coli: Influence of DNA repair activities and metabolic pathways
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1