Behaviour of a laterally loaded short-finned pile located on sloping ground

IF 1.2 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL International Journal of Physical Modelling in Geotechnics Pub Date : 2023-10-12 DOI:10.1680/jphmg.23.00011
K. T. Krishnanunni, Deendayal Rathod
{"title":"Behaviour of a laterally loaded short-finned pile located on sloping ground","authors":"K. T. Krishnanunni, Deendayal Rathod","doi":"10.1680/jphmg.23.00011","DOIUrl":null,"url":null,"abstract":"Finned piles are considered a novel solution to replace large-diameter piles supporting transmission towers, bridge abutments and so on and are often implemented beneficially for mooring dolphins in offshore areas. This experimental investigation was attempted to examine the lateral response of short-finned piles installed in the proximity of a typical slope of 1V:2H. The 1g model testing of regular and finned piles at different load eccentricities comprised three lateral load tests on horizontal ground and 24 lateral load tests on the slope with the pile at varying distances from the crest. The fin efficiency was observed to decrease with an increase in load eccentricity due to the poorer mobilisation of soil resistance on fins at higher load eccentricities. The finned pile installed at a distance of two pile diameters away from the crest exhibited a net efficiency closer to unity, indicating its ability to improve the receptible subgrade reaction near a loose and steeper sandy slope. An in-depth study of soil resistance developed in the finned pile located at the crest reveals that the fins effectively reduced the soil resistance, specifically in the region above the pivot point.","PeriodicalId":48816,"journal":{"name":"International Journal of Physical Modelling in Geotechnics","volume":"10 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Physical Modelling in Geotechnics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jphmg.23.00011","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Finned piles are considered a novel solution to replace large-diameter piles supporting transmission towers, bridge abutments and so on and are often implemented beneficially for mooring dolphins in offshore areas. This experimental investigation was attempted to examine the lateral response of short-finned piles installed in the proximity of a typical slope of 1V:2H. The 1g model testing of regular and finned piles at different load eccentricities comprised three lateral load tests on horizontal ground and 24 lateral load tests on the slope with the pile at varying distances from the crest. The fin efficiency was observed to decrease with an increase in load eccentricity due to the poorer mobilisation of soil resistance on fins at higher load eccentricities. The finned pile installed at a distance of two pile diameters away from the crest exhibited a net efficiency closer to unity, indicating its ability to improve the receptible subgrade reaction near a loose and steeper sandy slope. An in-depth study of soil resistance developed in the finned pile located at the crest reveals that the fins effectively reduced the soil resistance, specifically in the region above the pivot point.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
倾斜地基上侧向荷载短肋桩的受力特性
翅片桩被认为是替代大直径桩支撑输电塔、桥台等的一种新颖的解决方案,在近海地区的系泊海豚中得到了很好的应用。本试验旨在研究安装在典型1V:2H边坡附近的短肋桩的侧向响应。规则桩和翅片桩在不同荷载偏心距下的1g模型试验包括水平地面3次侧向荷载试验和距桩顶不同距离的边坡24次侧向荷载试验。观察到翅片效率随着负载偏心的增加而降低,这是由于在较高的负载偏心时,翅片上土壤阻力的动员较差。安装在离桩顶2个桩径处的翅片桩的净效率接近于统一,表明其能够改善松散陡峭的砂质边坡附近的可接受路基反力。对位于桩顶的肋片桩的土阻力进行了深入研究,发现肋片有效地降低了土阻力,特别是在枢轴点以上的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
15.80%
发文量
26
期刊介绍: International Journal of Physical Modelling in Geotechnics contains the latest research and analysis in all areas of physical modelling at any scale, including modelling at single gravity and at multiple gravities on a centrifuge, shaking table and pressure chamber testing and geoenvironmental experiments.
期刊最新文献
Active failure mechanism and earth pressure of narrow backfill behind retaining structures Physical modelling of cyclic loading induced footing settlement with a nearby pit excavation Centrifuge tests exploring the cyclic performance of suction bucket foundations in cohesionless soils Award-winning paper in 2022 International Journal of Physical Modelling in Geotechnics: Referees 2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1