Leveraging IoT data stream for near-real-time calibration of city-scale microscopic traffic simulation

IF 2.1 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IET Smart Cities Pub Date : 2023-10-31 DOI:10.1049/smc2.12071
Mozhgan Pourmoradnasseri, Kaveh Khoshkhah, Amnir Hadachi
{"title":"Leveraging IoT data stream for near-real-time calibration of city-scale microscopic traffic simulation","authors":"Mozhgan Pourmoradnasseri,&nbsp;Kaveh Khoshkhah,&nbsp;Amnir Hadachi","doi":"10.1049/smc2.12071","DOIUrl":null,"url":null,"abstract":"<p>The emergence of smart cities is set to transform transportation systems by leveraging real-time traffic data streams to monitor urban dynamics. This complements traditional microscopic simulation methods, offering a detailed digital portrayal of real-time traffic conditions. A framework for near-real-time city-scale traffic demand estimation and calibration is proposed. By utilising Internet of Things (IoT) sensors on select roads, the framework generates microscopic simulations in congested networks. The proposed calibration method builds upon the standard bi-level optimization formulation. It presents a significant computational advantage over available methods by (i) formulating the optimization problem as a bounded variable quadratic programming, (ii) acquiring sequential optimization technique by splitting computations into short time frames while considering the dependency of the demand in successive time frames, (iii) performing parallel simulations for dynamic traffic assignment in corresponding time frames using the open source tool Simulation of Urban MObility (SUMO), and (iv) feeding traffic count data of each time frame as a stream to the model. The approach accommodates high-dimensional real-time applications without extensive prior traffic demand knowledge. Validation in synthetic networks and Tartu City case study showcases scalability, accuracy, and computational efficiency.</p>","PeriodicalId":34740,"journal":{"name":"IET Smart Cities","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/smc2.12071","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Cities","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smc2.12071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of smart cities is set to transform transportation systems by leveraging real-time traffic data streams to monitor urban dynamics. This complements traditional microscopic simulation methods, offering a detailed digital portrayal of real-time traffic conditions. A framework for near-real-time city-scale traffic demand estimation and calibration is proposed. By utilising Internet of Things (IoT) sensors on select roads, the framework generates microscopic simulations in congested networks. The proposed calibration method builds upon the standard bi-level optimization formulation. It presents a significant computational advantage over available methods by (i) formulating the optimization problem as a bounded variable quadratic programming, (ii) acquiring sequential optimization technique by splitting computations into short time frames while considering the dependency of the demand in successive time frames, (iii) performing parallel simulations for dynamic traffic assignment in corresponding time frames using the open source tool Simulation of Urban MObility (SUMO), and (iv) feeding traffic count data of each time frame as a stream to the model. The approach accommodates high-dimensional real-time applications without extensive prior traffic demand knowledge. Validation in synthetic networks and Tartu City case study showcases scalability, accuracy, and computational efficiency.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用物联网数据流实现城市尺度微观交通模拟的近实时校准
智能城市的出现将通过利用实时交通数据流来监控城市动态,从而改变交通系统。这补充了传统的微观模拟方法,提供了实时交通状况的详细数字写照。提出了一种近实时城市规模交通需求估计与校准的框架。通过在选定的道路上使用物联网(IoT)传感器,该框架可以在拥挤的网络中生成微观模拟。所提出的标定方法建立在标准的双层优化公式的基础上。与现有方法相比,它具有显著的计算优势:(i)将优化问题表述为有界变量二次规划,(ii)在考虑连续时间框架中需求的依赖性的同时,通过将计算分解为短时间框架来获得顺序优化技术,(iii)使用开源工具模拟城市交通(SUMO)在相应的时间框架内对动态交通分配进行并行模拟,(iv)将每个时间段的流量计数数据作为流输入模型。该方法适应高维实时应用,不需要大量的先验交通需求知识。在合成网络和塔尔图市案例研究中的验证展示了可扩展性、准确性和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Smart Cities
IET Smart Cities Social Sciences-Urban Studies
CiteScore
7.70
自引率
3.20%
发文量
25
审稿时长
21 weeks
期刊最新文献
Guest Editorial: Smart cities 2.0: How Artificial Intelligence and Internet of Things are transforming urban living A hybrid attention‐based long short‐term memory fast model for thermal regulation of smart residential buildings A collaborative WSN‐IoT‐Animal for large‐scale data collection Advancing smart tourism destinations: A case study using bidirectional encoder representations from transformers‐based occupancy predictions in torrevieja (Spain) Smart city fire surveillance: A deep state-space model with intelligent agents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1