AMM AL-NAGGAR, RM ABD EL-SALAM, AIA HASSAN, MMA EL-MOGHAZI, AA AHMED
{"title":"SALINITY TOLERANCE OF QUINOA (CHENOPODIUM QUINOA WILLD.) GENOTYPES TO ELEVATED NACL CONCENTRATIONS AT GERMINATION AND SEEDLING STAGES","authors":"AMM AL-NAGGAR, RM ABD EL-SALAM, AIA HASSAN, MMA EL-MOGHAZI, AA AHMED","doi":"10.54910/sabrao2023.55.5.30","DOIUrl":null,"url":null,"abstract":"Evaluating quinoa genotypes for salinity tolerance at germination and seedling stages is a prerequisite for plant breeders. Thus, the scrutiny of 19 quinoa genotypes at different salinity levels under controlled laboratory and greenhouse conditions occurred at the germination and seedling stages. This study aimed to identify the most tolerant genotypes to elevated salinity levels at germination and seedling stages and to determine the traits of a robust association with salinity tolerance using a factorial experiment based on a randomized complete block design in three replications. The four salinity solutions used were zero (control), 3000, 6000, and 9000 ppm NaCl. Increasing concentrations of NaCl caused a gradual and significant decrease for all studied traits except mean germination time, which significantly increased. At all salinity-stress levels (3000, 6000, and 9000 ppm NaCl), the studied 19 genotypes underwent classification based on their salinity tolerance index (STI) into three categories, i.e., tolerant, moderately tolerant, and sensitive. The four most salinitytolerant quinoa genotypes under all studied salinity-stress conditions were Rainbow-2, Ql3, RH, and KvlSRA2. The strongest correlations were between STI and each of seedling length, root length, seedling fresh weight, seedling vigor index I, and seedling vigor index II under 3000 ppm; germination percentage, speed germination index, seedling extent, root length, seedling fresh weight, and seedling vigor index II under 6000 ppm; and shoot length and seedling vigor index I under 9000 ppm salinity concentration level. Traits showing sturdy correlations with STI, high heritability estimates, high expected genetic advance, and wide phenotypic and genotypic variability were seedling dry weight, seedling fresh weight, seedling vigor index II, and speed germination index at all salinity stress concentrations; they are recommendable as selection criteria for salinity tolerance in quinoa at germination and seedling stages.","PeriodicalId":21328,"journal":{"name":"Sabrao Journal of Breeding and Genetics","volume":"160 3","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sabrao Journal of Breeding and Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54910/sabrao2023.55.5.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Evaluating quinoa genotypes for salinity tolerance at germination and seedling stages is a prerequisite for plant breeders. Thus, the scrutiny of 19 quinoa genotypes at different salinity levels under controlled laboratory and greenhouse conditions occurred at the germination and seedling stages. This study aimed to identify the most tolerant genotypes to elevated salinity levels at germination and seedling stages and to determine the traits of a robust association with salinity tolerance using a factorial experiment based on a randomized complete block design in three replications. The four salinity solutions used were zero (control), 3000, 6000, and 9000 ppm NaCl. Increasing concentrations of NaCl caused a gradual and significant decrease for all studied traits except mean germination time, which significantly increased. At all salinity-stress levels (3000, 6000, and 9000 ppm NaCl), the studied 19 genotypes underwent classification based on their salinity tolerance index (STI) into three categories, i.e., tolerant, moderately tolerant, and sensitive. The four most salinitytolerant quinoa genotypes under all studied salinity-stress conditions were Rainbow-2, Ql3, RH, and KvlSRA2. The strongest correlations were between STI and each of seedling length, root length, seedling fresh weight, seedling vigor index I, and seedling vigor index II under 3000 ppm; germination percentage, speed germination index, seedling extent, root length, seedling fresh weight, and seedling vigor index II under 6000 ppm; and shoot length and seedling vigor index I under 9000 ppm salinity concentration level. Traits showing sturdy correlations with STI, high heritability estimates, high expected genetic advance, and wide phenotypic and genotypic variability were seedling dry weight, seedling fresh weight, seedling vigor index II, and speed germination index at all salinity stress concentrations; they are recommendable as selection criteria for salinity tolerance in quinoa at germination and seedling stages.
期刊介绍:
The SABRAO Journal of Breeding and Genetics is an international journal of plant breeding and genetics research and was first published in 1969. It is the official publication of the Society for the Advancement of Breeding Research in Asia and Oceania (SABRAO).
Its objectives are to: promote the international exchange of research information on plant breeding and genetics, by describing new research findings, or ideas of a basic or practical nature; and be a medium for the exchange of ideas and news regarding members of the Society.
The Journal gives priority to articles that are of direct relevance to plant breeders and with emphasis on the Asian region. Invited for publication are research articles, short communications, methods, reviews, commentaries, and opinion articles. Scientific contributions are refereed and edited to international standards.
The journal publishes articles for SABRAO members mainly. The Journal preferred strongly that at least one author should be a current member of the Society. Non-members may also publish in the journal.