CFD Analysis for a Twisted Elliptical Double Tube Heat Exchangers Integrated with a Twisted Tape

IF 0.7 Q4 THERMODYNAMICS International Journal of Heat and Technology Pub Date : 2023-10-31 DOI:10.18280/ijht.410520
Riyam Ali Khaled, Khudheyer S. Mushatet
{"title":"CFD Analysis for a Twisted Elliptical Double Tube Heat Exchangers Integrated with a Twisted Tape","authors":"Riyam Ali Khaled, Khudheyer S. Mushatet","doi":"10.18280/ijht.410520","DOIUrl":null,"url":null,"abstract":"A numerical investigation into the thermal-hydraulic performance of double elliptical twisted tubes fitted with twisted tape has been conducted. The fluid flow and heat transfer in the twisted double elliptical tubes heat exchanger were modeled utilizing Navier-Stokes, energy, and turbulence equations. The governing equations were resolved using ANSYS Fluent 23.1. Twisting ratios of 5 for twisted tubes and 4 for twisted tape were applied. The Reynolds number was varied within the range of 5000 to 25000. A counter-flow arrangement was established by inputting hot water into the inner tube and cold water into the outer tube. The introduction of twisted tape (TT) resulted in enhanced fluid and centrifugal force mixing near the wall, thereby significantly influencing heat transfer in this region. The study revealed that the heat transfer and performance were notably improved in comparison to a plain double-tube heat exchanger. Furthermore, the heat exchanger's effectiveness was found to increase by 75% at a Reynolds number of 5000.","PeriodicalId":13995,"journal":{"name":"International Journal of Heat and Technology","volume":"1 2","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ijht.410520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

A numerical investigation into the thermal-hydraulic performance of double elliptical twisted tubes fitted with twisted tape has been conducted. The fluid flow and heat transfer in the twisted double elliptical tubes heat exchanger were modeled utilizing Navier-Stokes, energy, and turbulence equations. The governing equations were resolved using ANSYS Fluent 23.1. Twisting ratios of 5 for twisted tubes and 4 for twisted tape were applied. The Reynolds number was varied within the range of 5000 to 25000. A counter-flow arrangement was established by inputting hot water into the inner tube and cold water into the outer tube. The introduction of twisted tape (TT) resulted in enhanced fluid and centrifugal force mixing near the wall, thereby significantly influencing heat transfer in this region. The study revealed that the heat transfer and performance were notably improved in comparison to a plain double-tube heat exchanger. Furthermore, the heat exchanger's effectiveness was found to increase by 75% at a Reynolds number of 5000.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带扭带的扭椭圆双管换热器CFD分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
22.20%
发文量
144
期刊介绍: The IJHT covers all kinds of subjects related to heat and technology, including but not limited to turbulence, combustion, cryogenics, porous media, multiphase flow, radiative transfer, heat and mass transfer, micro- and nanoscale systems, and thermophysical property measurement. The editorial board encourages the authors from all countries to submit papers on the relevant issues, especially those aimed at the practitioner as much as the academic. The papers should further our understanding of the said subjects, and make a significant original contribution to knowledge. The IJHT welcomes original research papers, technical notes and review articles on the following disciplines: Heat transfer Fluid dynamics Thermodynamics Turbulence Combustion Cryogenics Porous media Multiphase flow Radiative transfer Heat and mass transfer Micro- and nanoscale systems Thermophysical property measurement.
期刊最新文献
Investigating Thermal Deflection in a Finite Hollow Cylinder Using Quasi-Static Approach and Space-Time Fractional Heat Conduction Equation Enhancing Latent Thermal Battery Performance: A Study of Multistage Organic Phase Change Material Systems Optimization of Heat Transfer in Solar-Powered Biodiesel Reactors Using Alumina Nanofluids: A Combined Experimental and Numerical Study Capillary Tube Length and Heat Transfer Dynamics in Air Conditioners: A Comparative Analysis of R-12 and Its Alternatives Modeling of Electricity Generation Using Smart Piezoelectric-Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1