{"title":"Investigation of Heat Sinks with Different Perforation Patterns","authors":"Rana A. Al-Luhaibi, Ibrahim Thamer Nazzal","doi":"10.18280/ijht.410510","DOIUrl":null,"url":null,"abstract":"As the electronics industry gravitates towards smaller yet more powerful devices, the need to enhance traditional heat sink cooling capabilities without enlarging their footprint has become increasingly urgent. This necessity stems from the adverse effects of high temperatures on electronic performance and the limitations of traditional heat sinks' thermal transfer. This study addresses the challenge by investigating modifications to heat sink design, specifically through the strategic perforation of fins to increase their surface area, thereby improving heat dissipation without augmenting size. A series of lateral plate fins, perforated for increased surface area, were positioned on the base of a heat sink. The thermal performance of these modified heat sinks was then tested experimentally within a long, square cross-sectioned channel, facilitating forced air passage at manually controlled speeds. Three heat sink samples were compared under variable airflow rates to ascertain the cooling efficiency of the perforated fins. Three distinct rectangular heat sinks were utilized. The first featured holes of varying diameters arranged horizontally (PHS-HV), while the second had vertically varying diameters, with smaller ones at the top and larger ones at the bottom (PHS-VV). These perforated heat sinks were contrasted against a non-perforated heat sink under different thermal loads and Reynolds numbers. Results demonstrated enhanced heat dissipation, Nusselt number, and heat transfer coefficient in perforated fins compared to non-perforated ones. Notably, the use of different hole diameters in the same fin positively impacted heat dissipation, with horizontal diameter expansion (PHS-HV) outperforming vertical expansion (PHS-VV). The heat transfer improvement was 8.53% for PHS-HV and 4.36% for PHS-VV at Re 20000. Furthermore, perforation contributed to a decrease in heat sink mass compared to solid heat sinks, indicating cost and material savings. This study underscores the potential of strategic perforation in augmenting heat sink performance for next-generation electronics.","PeriodicalId":13995,"journal":{"name":"International Journal of Heat and Technology","volume":"19 4","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ijht.410510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
As the electronics industry gravitates towards smaller yet more powerful devices, the need to enhance traditional heat sink cooling capabilities without enlarging their footprint has become increasingly urgent. This necessity stems from the adverse effects of high temperatures on electronic performance and the limitations of traditional heat sinks' thermal transfer. This study addresses the challenge by investigating modifications to heat sink design, specifically through the strategic perforation of fins to increase their surface area, thereby improving heat dissipation without augmenting size. A series of lateral plate fins, perforated for increased surface area, were positioned on the base of a heat sink. The thermal performance of these modified heat sinks was then tested experimentally within a long, square cross-sectioned channel, facilitating forced air passage at manually controlled speeds. Three heat sink samples were compared under variable airflow rates to ascertain the cooling efficiency of the perforated fins. Three distinct rectangular heat sinks were utilized. The first featured holes of varying diameters arranged horizontally (PHS-HV), while the second had vertically varying diameters, with smaller ones at the top and larger ones at the bottom (PHS-VV). These perforated heat sinks were contrasted against a non-perforated heat sink under different thermal loads and Reynolds numbers. Results demonstrated enhanced heat dissipation, Nusselt number, and heat transfer coefficient in perforated fins compared to non-perforated ones. Notably, the use of different hole diameters in the same fin positively impacted heat dissipation, with horizontal diameter expansion (PHS-HV) outperforming vertical expansion (PHS-VV). The heat transfer improvement was 8.53% for PHS-HV and 4.36% for PHS-VV at Re 20000. Furthermore, perforation contributed to a decrease in heat sink mass compared to solid heat sinks, indicating cost and material savings. This study underscores the potential of strategic perforation in augmenting heat sink performance for next-generation electronics.
期刊介绍:
The IJHT covers all kinds of subjects related to heat and technology, including but not limited to turbulence, combustion, cryogenics, porous media, multiphase flow, radiative transfer, heat and mass transfer, micro- and nanoscale systems, and thermophysical property measurement. The editorial board encourages the authors from all countries to submit papers on the relevant issues, especially those aimed at the practitioner as much as the academic. The papers should further our understanding of the said subjects, and make a significant original contribution to knowledge. The IJHT welcomes original research papers, technical notes and review articles on the following disciplines: Heat transfer Fluid dynamics Thermodynamics Turbulence Combustion Cryogenics Porous media Multiphase flow Radiative transfer Heat and mass transfer Micro- and nanoscale systems Thermophysical property measurement.